Modelling kill-trap data to optimise landscape-scale pest control

Grant Norbury & Dean Anderson

Pest trapping

 Undertaken for a range of pest species across large chunks of NZ

An abundant source of data that is often not fully utilised

Managers want to know

 Effectiveness of trapping at reducing pest numbers

Best trap and lure types

 Best way to deploy trap and lure types in space and time

However, trap-catch data must be used wisely

- Trap-catch is the number of pests <u>removed</u>, but it says nothing about the number <u>remaining</u>
- Trap-catch is usually indicative of the number of pests in the system, not the impact of trapping
- We developed a modelling method that uses trap-catch data in a way that accounts for the underlying population
- The method combines trap-catch data with a pest population model, in a 'Bayesian' framework

The model (Stage I)

- Bayesian logic incorporates population parameter estimates from previous studies, which are subsequently updated using the trap-catch data
- The model estimates the following parameters that best describe the observed trap-catch data:
 - population size and growth rate
 - home-range size
 - probability of capture for different trap-bait types
 - immigration rate
 - reproduction rate
 - habitat preferences

The model (Stage II)

- Simulation of different trapping scenarios on pest populations
- The biological and trapping processes are stochastic by incorporating the uncertainty in parameter estimates from the Stage I modelling

Trapping data from Macraes Flat

Macraes Flat

Cat data only

- Data collected 2005 2014
- 347–879 traps set over 4000 ha
- Checked weekly (victor traps daily)
- 2250 cats captured (250 per year on avge)
- 16 trap-bait combinations

	Rabbit	Fish	Egg
Cage	X	X	
Conibear	X	X	X
DOC150	X		X
DOC250	X	X	X
Fenn	X		X
Timms	X	X	
Victor	X	X	

Model results Best trap-bait combination

Model results Cat ecology

- Home range size
 - ~ 152 ha
- In situ breeding
 - ~ 3 cats per year
- Immigration
 - ~ 237 cats per year
- Distribution across landscape

More common in open grassland vs tussock

More common from south to north

Model results

- Background population about twice that of the number removed
- Residual cat population isn't getting appreciably smaller
- Suggestion of increased trapping effect from 2009 2013
- Need to know the black line in the absence of control

Simulation

Simulation

• Current regime: Probability of not exceeding 64 cats = 0.69

Simulation

- Current regime: Probability of not exceeding 64 cats = 0.69
- New regime: Extra 59 kill traps. 7% increase in trap nights.
 Probability of not exceeding 64 cats = 0.85

Summary

- Victor traps the best
- Rabbit meat the best
- Immigration is the primary source of cats
 - Trapping should focus on perimeters
- Open habitats more preferred than tussock
 - Trapping should focus on perimeters
- Kill traps along remote borders more effective, and probably more cost-effective

Acknowledgements

- DOC staff
 - Andy Hutcheon, James Reardon, Patrick Liddy, John Keene
- Funded by MBIE and DOC