

Is Detection (and Mop-up) Feasible for Pest Eradication at Vast Scales?

Detection and surveillance research workshop September 2013

Graham Nugent,
Andrew Gormley,
Mandy Barron
Landcare Research, Lincoln

Research funded by MBIE: Suppression Systems (Contract C09X1008)

Eradication of Pests from Islands

Two main strategies

- 1. Fail-safe
- 100% knock-down/eradication
- No checking for survivors

- 2. Safe-fail
- Lower-cost knock down
- Detection and mop-up (DMU)

Fail-safe Rat Eradications

Ensures every pest at risk

- High sowing rate of palatable bait
- Repeat to mop-up survivors
- 100% 'guarantee'

Highly successful

- 332 successful, 35 failed*
- Campbell Island (11,000 ha) is biggest area to date
- South Georgia (80,000ha) currently being attempted

How big can we go?

Predator Free Stewart Island?

Scale

170,000ha, mostly National Park or conservation land

Species present

- Rats (3 spp) & possums
- Cats, Hedgehogs
- Red and White-tailed deer
- No mice, mustelids, rabbits, pigs, goats

Feasibility Study

- Rats, wild cats and possums
- Aerial brodifacoum using 25kg/ha (2 x 12kg/ha sowings)
- \$35-55 million (\$200-350/ha)

- Brent Beaven, DOC Invercargill
 - For Stewart Island/ Rakiura Community and Environment Trust

- **Simulations** Using R and package 'Shiny'
 - http://spark.rstudio.com/lcr/island/

Population Size

[1	780875	686621	3286882	261776	580345	2779815	4018437	441927	2119533
[10	3 430 3420	607531	28519	3776004	633411	3013522	3285848	655031	3117355
[19	3710660	572330	2 .012	40 389 59	601215	2861043	3889135	579865	2764003
[28	3728106	0	0	0	0	0	0	0	0
[37] 0	θ	0	0	0	0	0	θ	0
[46] 0	θ	θ	0	0	0	0	0	θ
[55] 0	0	0	0	0	0	θ	0	0
[64] 0	0	0	0	0	0	0	0	0
[73] 0	0	0	0	0	0	0	0	0
[82] 0	0	0	0	0	0	0	0	0

Fail-safe: Scale matters

Number of survivors increases with area

 Operational failure worse assuming heterogeneous survival

Highly dependent on mortality rate

- 1-10 survivors if 99.9999% mortality
- •

99.999% mortality (survival is one in a million)

Fail-safe: Scale matters

Number of survivors increases with area

 Operational failure worse assuming heterogeneous survival

Highly dependent on mortality rate

- 1-10 survivors if 99.9999% mortality
- 100-1000 survivors if 99.99% mortality

99.999% mortality (survival = one in a million)

99.99% mortality (survival = one in ten thousand)

Could a 'Safe-Fail' alternative work?

i.e. post knockdown detection and mop-up (DMU)

Spend less on knockdown, and more on finding and killing survivors

Need comprehensive surveillance and effective rapid response (mop-up)

Safe-fail: Low cost knockdown

Single sowing with reduced bait density

Need >99.99% kill for >80% reduction in occupancy

Safe-fail: Detection and Rapid Mop-up Protocol

Detection aimed at clusters of survivors (not individuals)

Rapid large scale aerial mop-up around each detection

Flasipopeistice : to

1km grid (1600 cards)

- Detection = 0.05
- 15 years to eradicate
- \$5m detection, \$14m mop up

0.5 km grid (6400 cards)

- Detection = 0.1
- 7-8 years to eradicate
- \$5m detection, \$10m mop up

0.25 km grid (25,600 cards)

- Detection = 0.4
- 3 years to eradicate
- \$4m detection, \$8m mop up

Detection probability is crucial

Main determinant of cost

 Needs to be greater than 0.5 for complete mop up within 3 yrs

- Is that realistic?
 - Sweetapple & Nugent (2008) calculated detection of 0.8 for chew card grid 250 x 50 m grid

Looking forward

Detection issues are crucial

- Early
- Cost effective

Current technology

 Safe-fail cost for Stewart Island may be higher than Fail-safe?

Increase cost-effectiveness

 High tech gizmos for real-time continuous surveillance

