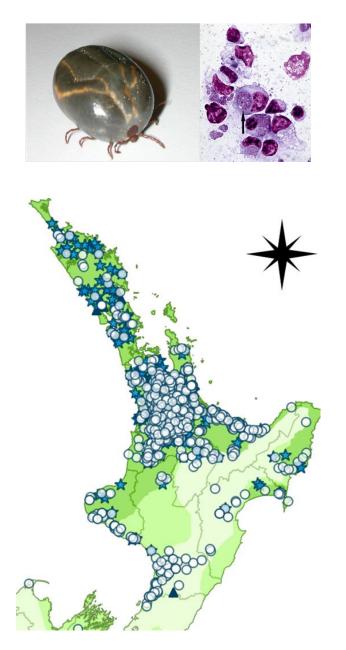
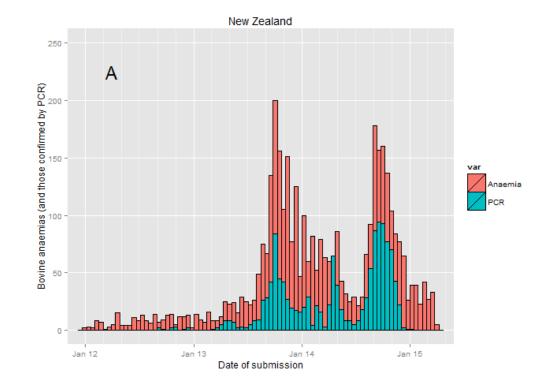


MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HIKINA WHAKATUTUKI

Vaccine development to prevent growing impacts of tick-borne diseases to New Zealand's livestock industries

Dan Tompkins & Felix Guerrero





Theileria orientalis Ikeda emergence

Index case:

- Approximately 20 cows died over the calving period of "milk fever like disease".
- Reproduction: 6 week in calf rate of 44% (Target 78%)
- Milk production: 230 milk solids per cow (compared to regional average of 315).

Other threats...

Table 8. Summary table of medium and high priority agents

Agent type		Present in New Zealand Absent from New Zealand	
Virus	Flavivirus	Unidentified Group B virus?	West Nile virus
			Yellow Fever virus
			Murray valley encephalitis virus
	Alphavirus	Whataroa virus	Ross river virus
		Unidentified Group A virus?	Sinbis virus
			Barmah forest virus
	Quaranfil	Johnston Atoll virus. Introduced.	
	Lyssavirus		Bovine Ephemeral fever virus
Haemosporidia	Plasmodium	Plasmodium relictum	
		P. cathemerium	1
		P. spp.	1
	Haemoproteus	Haemoproteus spp.	1
	Leucocytozoon	Leucocytozoon tawaki	1
	-	Leucocytozoon spp.	1
Piroplasms	Babesia	Babesia kiwiensis	Babesia bigemina
			Babesia gibsoni
			Babesia ovata
			Babesia major
			Babesia ovis
			Babesia shortti
			Babesia pierci
Rickettsias	Anaplasma	Anaplasma sp. unidentified. Introduced.	
	Rickettsia	Rickettsia typhi (murine typhus). Introduced.	Rickettsia japonica
		Bartonella henselae. Introduced.	Rickettsia tsutsugamushi (scrub typhus).
		Bartonella clarridgeiae. Introduced.	Rickettsia spp.
		Rickettsia felis. Introduced.	Coxiella burnetii (Q fever).
			Bartonella spp.
	Theileria	Theileria orientalis. Introduced.	Theileria sergenti
		Theileria sp. Introduced.	Theileria buffeli
Bacteria	Yersinia		Yersinia pestis
	Spirochete	Borrrelia garinii? Introduced.	Borrelia burgdorferi (Lyme disease), also
			B. afzelii, B. japonica
			Borrelia recurrentis (louse-borne relapsing fever).
Nematodes	Filaroid		Dirofilaria immitis
			Wuchereria bancrofti
			Brugia malayi

Mackereth et al. 2007. Vectors and vector borne diseases. Risk Assessment. Biosecurity New Zealand

Leverage overseas developments in tick vaccinology

MBIE Catalyst: Seeding

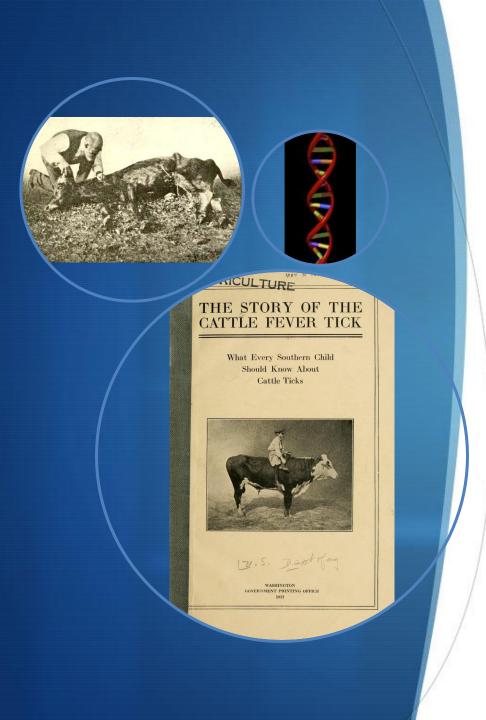
- Hold an NZ workshop;
- Circulate the first draft proposal;
- Expand the project team;
- Engage partners as appropriate;
- Finalise project application

Benefits to NZ

- Improve current livestock productivity;
- Prevent future losses;
- Overseas vaccine sales;
- Build capability (preparedness);
- Safeguard human and animal health

A Genome-based Approach To Deliver New Pest Control Technology

Dr. Felix D. Guerrero

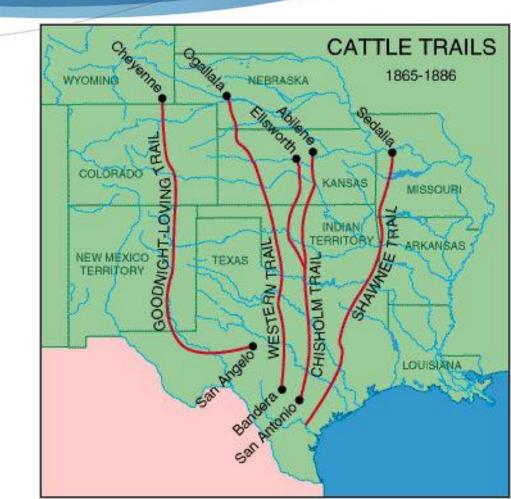

U. S. Department of Agriculture Agricultural Research Service U. S. Livestock Insects Research Laboratory Kerrville, TX USA

USDA-ARS Kerrville Lab Research Mission

The mission of the Knipling-Bushland U.S. Livestock Insects Research Laboratory is to **provide** the Cattle Fever Tick Eradication Program of APHIS/VS, the U.S. cattle industry, and the public, **technology for eradicating or controlling ticks and blood-feeding flies of veterinary and medical importance**.

My Specific Research

- Genome-Based Cattle Fever Tick Studies
 - Molecular basis of pesticide resistance
 - Development of an anti-cattle tick vaccine
- ♦ Biting Flies
 - DNA-based diagnosis of pesticide resistance
 - Anti-biting fly vaccine research
 - ♦ Maintenance of Screwworm eradication status of U.S.
 - Led development of transgenic female conditional lethal strain



Today's Focus: Cattle Ticks

- ♦ Relevance to U. S. agriculture
- ♦ Genome-based discovery
- ♦ Discovery to application

Historical Background of the Texas Cattle Fever Problem

- Cattle tick was endemic in US
- <u>Problems for cattle industry</u>
- 1795 & 1796: Severe outbreaks of disease in cattle following a shipment of cattle northward from the south
- 1850 Texas cattle began to be driven through AK, MO, KS & western states: 50-90 % death in cattle
- 1868: disasters in IL & IN left
 15,000 cattle dead

Cattle Tick-Babesia bovis Interaction

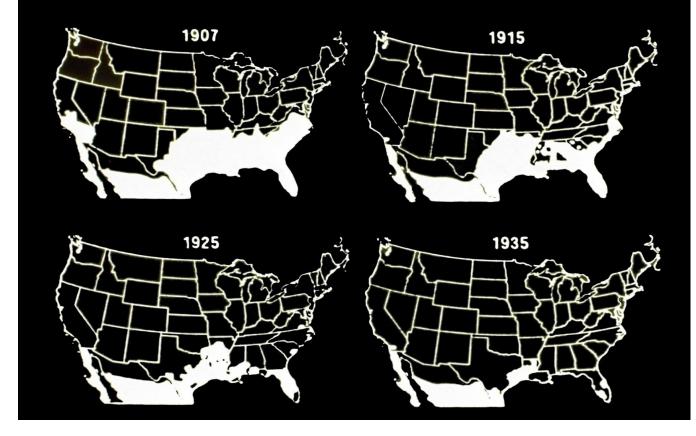
Enter salivary glands and further develop to sporozoite stage

Adult bite infective

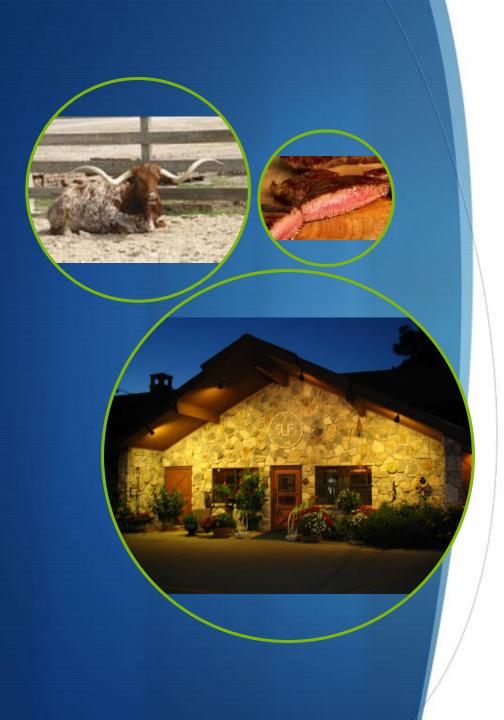
Infected eggs hatch

Infect all cells and tissues

including oocytes

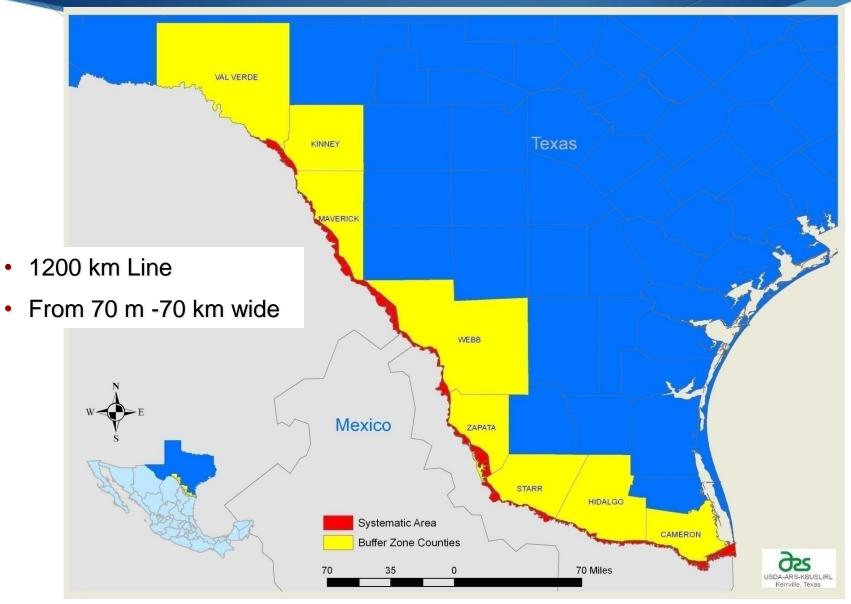


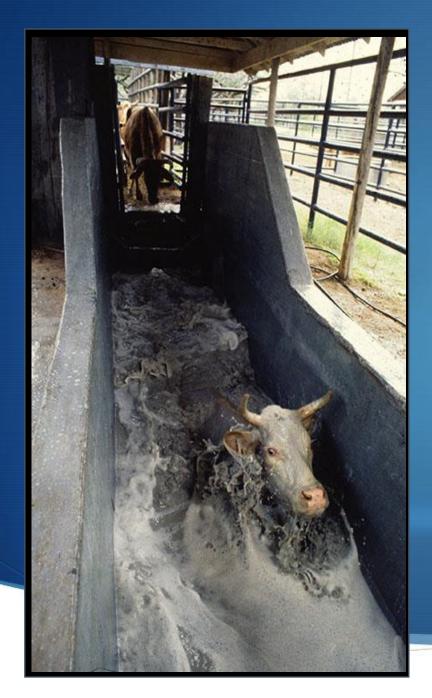
Tick ingests blood infected with merozoite stage


Kinete stage escapes into Adult hemolymph Zygote penetrates adult gut digestive cells

CFT Officially Declared Eradicated from USA in 1943

Areas Infested With Cattle Fever Ticks


Graham and Hourigan 1977



Tick Eradication Saved \$\$\$

\$3 billion estimated annual savings in today's dollars realized by livestock industry

CFTEP Permanent Quarantine Area

Ticks are Common in Mexico

U.S.-Mexico Border

- + Import >1,000,000 head annually
- + Mandatory dipping in OP
- + OP resistant ticks in Mexico

With pesticide resistance and increased infestations within and outside of the quarantine zone.....

Is reinfestation of the US inevitable?

Genome-Based Approach to Discover New Control Technology

Cattle Tick Genome Project 2004-2016

- Based on our belief that the genome holds the key to development of new control technologies!
- ♦ Critical factors drove us to a <u>2-phase approach</u>
 - ♦ <u>Huge genome</u>: 2.4 X larger than human genome
 - ♦ <u>Difficult genome</u>: due to >70% repetitive DNA content
- <u>Phase 1</u> focused on sequencing gene-rich regions
- <u>Phase 2</u> focused on sequencing complex genome regions

Tick Genome Fractions and 2004 Technology

Highly repetitive: Sequencing <u>technology not available</u>

→ Moderately repetitive: Available <u>technology too expensive</u>

Phase Ia Approach: 2004-2009

♦ Collaboration with TIGR (2004-7)

- § 50,000 Sanger ESTs sequenced and assembled 13,800 gene coding regions into a Gene Index
- Collaboration with Murdoch Univ. initiated CattleTickBase
 - http://cattletickbase.ccgapps.com.au

CENTRE FOR COMPARATIVE GENOMICS Western Australia							
CattleTickBase - Rhipicephalus microplus							
View Analyses Browse Genome Annotations GBrowse Select a BAC sequence to view in GBrowse Select a BinGl Cot extended transcript to view in GBrowse Wave gene annotations for larvel transcript Brany Olew gene annotations for tick gut transcript Brany Go back to organism portal	Link to download Live fe		<image/> <section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header>				
			Project site contains This site contains access to data, analysis and to tools specific to the analysis of Phipicophalus microplus. Data types include EST, BAC, and Cot DNA sequences, microarray data and miRNA studies direct link table can be found under "Download Data" . Access to tools georatic to the analysis of Hinpicophalus microplus, this includes interactive Boinformatics pipeline analysis construction (YAB). Get started using our online tutonal (link) and online help. Or go direct to View Analysis tools links.				
© 2010 Centre for Comparative Genomics, Murdoch University							

- Sequence "unique" gene-rich regions of genomic
 DNA through a reassociation kinetics-based approach
- Collaboration with Mississippi State University and Molecular Research LP.

Phase 1 Product: Gene-rich Dataset

 CattleTickBase: Website hosts the dataset of 28,900 cattle tick gene-coding regions

http://cattletickbase.ccgapps.com.au

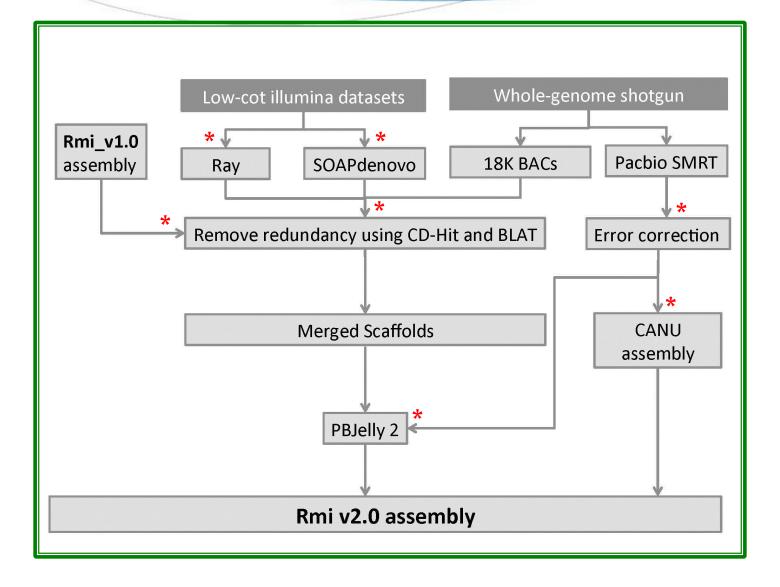
- Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus. FD Guerrero, P Moolhuijzen, et al., BMC Genomics 11: 374, 2010.
- CattleTickBase: An integrated Internet-based bioinformatics resource for Rhipicephalus (Boophilus) microplus. MI Bellgard, PM Moolhuijzen, et al. Intl J Parasitol 42: 161-169, 2012.

Phase 2: The Difficult Genome Region 2012-13

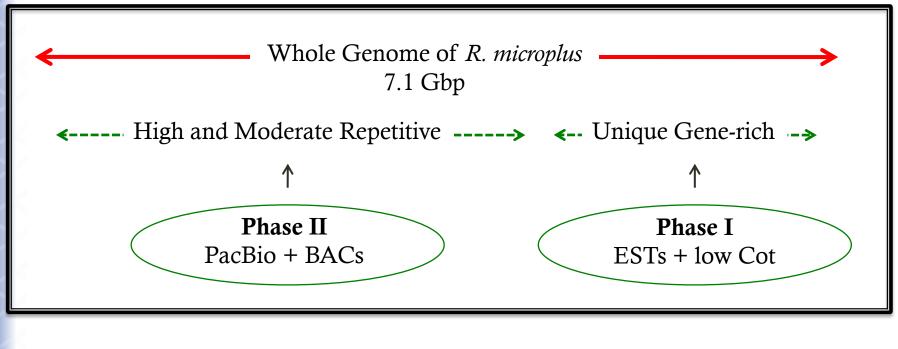
- Collaboration with National Center for Genome Resources in Santa Fe, New Mexico.
- Utilizing Next-Next Gen technology: Pac Bio in longread mode
 - ♦ 177 Pac Bio SMRT cells
 - ♦ >200 million reads per SMRT cell
 - \diamond Version 3 cells
 - \diamond Pac Bio XL enzyme
 - \diamond Avg. sequence read length \sim **5,000** bp

Phase 2 Product: Draft Quality Genome Sequence

♦ 52 x 10⁹ bp from Illumina/454 (7X)
♦ 33 x 10⁹ bp from Pac Bio (5X)
♦ 2 x 10⁹ bp from BAC library clone sequencing (0.3X)


Assembled at Murdoch University

The Size of the Problem


- Statistics:
 - 14,000,000 Pac Bio sequences
 - Average read insert length = 2,371
 - Maximum read insert length = 26,364
 - Total number of tick genome basepairs = 33×10^9 (5X coverage)
- Must error correct PacBio reads before assembly.
- Such a large PacBio read set covering an entire complex eukaryotic genome had never been reported as assembled.

Assembly Overview

12X-Coverage in CattleTickBase

By comparison >>>

← Human Genome → 3.2 Gbp

- ♦ Genome studies identified tick genes and sequence
- ♦ Bioinformatics analysis identified gene function
- For vaccine development, we focus on tick genes/proteins with critical function
 - ♦ Development
 - ♦ Feeding
 - Pathogen transmission

Vaccine Antigen Candidates Selection Criteria

Selected from tissue-specific gene datasets

Verified expression in gut or ovary membrane.

*Low sequence similarity to mammalian proteins.

Exclude members of large gene families.

 Prefer single or low copy genes to avoid functional redundancy among gene family members.

Critical function to the tick.

Datasets Available to Mine for Vaccine Antigens

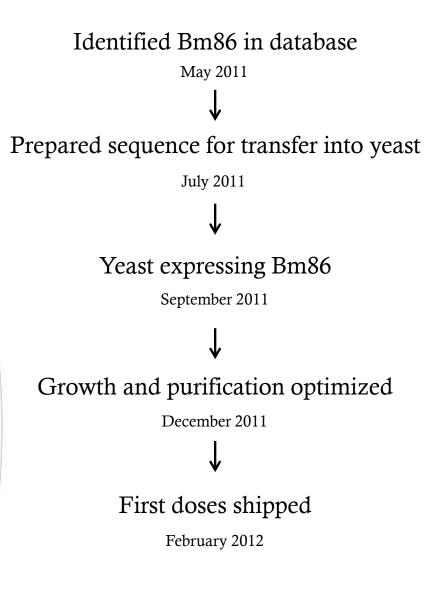
- Various treated larvae
- ♦ Babesia-infected vs. uninfected
 - Engorged female ovary
 - Engorged female gut
 - Larvae
- Synganglia
- ♦ Haller's Organ
- \diamond 0, 3 hour fed female adults
- 3 hour host-exposed unfed female adults

Genome Project-Selected Vaccine Candidates

Name	Basis for Selection	Status
Antigen 1 (Aquaporin)	In silico structure and function	In cattle trials
Antigen 2	Midgut/saliva protein Upregulated w/Babesia inf.	In cattle trials
Antigen 4	Midgut upregulated w/Babesia inf. + outperformed Bm86 during <i>in</i> <i>vitro</i> tick feeding	In cattle trials
Antigen 5	Upregulated in adult gut, receptor binding function	Lab scale up
Antigen 6	Adult gut protein upregulated after Babesia infection	Lab scale up
Antigen 7	Adult ovary protein upregulated after Babesia infection	Lab scale up
Antigen 8	Protein upregulated in ovary and salivary glands after Babesia infection	Lab scale up

Vaccine antigen production

- Protein coding region cloned into DNA expression plasmid
 - Histidine tag on C-terminus to aid in purification
 - *myc* epitope recognition sequence at C-terminus to aid in protein detection
 - Methanol-inducible gene promoter incorporated into plasmid
- Production vector is a *Pichia pastoris* commercial strain amenable to methanol-inducible growth using standard media


Antigen Production Process Timeline

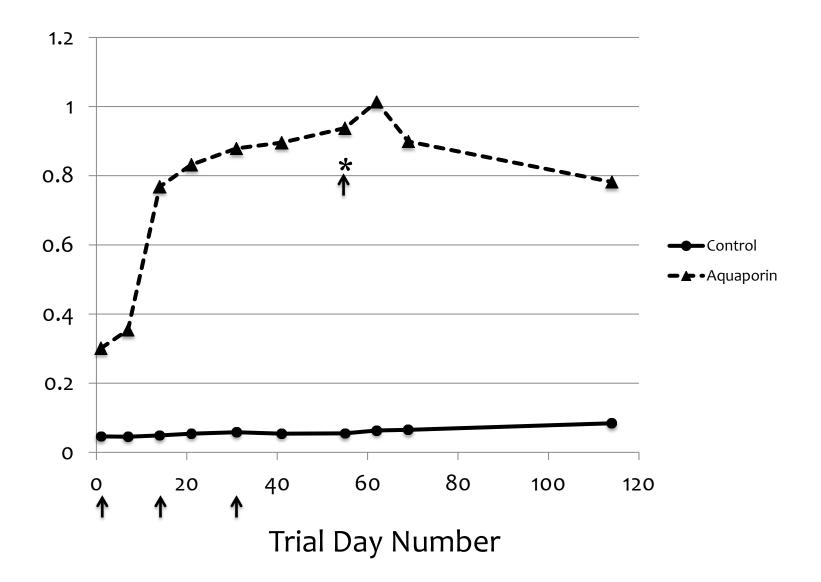
Example of Rm86Texas

From Gene Discovery

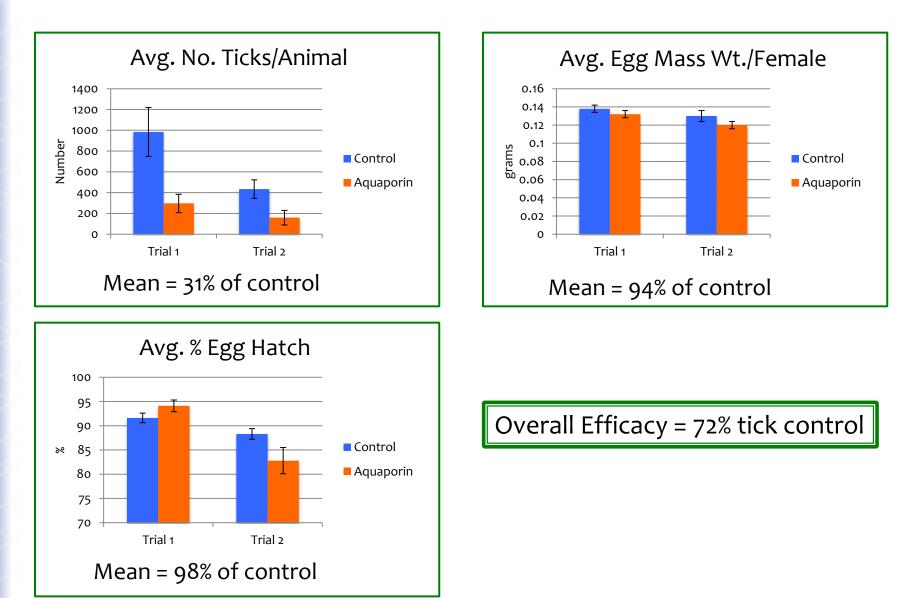
Antigen

9 months

Production capacity: 3 week process to produce 300 doses


Antigen 1 Vaccine Trial Brazil EMBRAPA

♦ <u>Vaccine Antigen</u>: *R. microplus* aquaporin


- \diamond Water channel membrane protein
- \diamond Highly expressed in tick neural tissues
- ♦ Produced as recombinant protein in *Pichia pastoris*

♦ <u>Vaccine Adjuvant</u>: Montanide 61

ELISA results

Vaccine Efficacy Data

Followup and Technology Transfer

- Patented Antigens 1 (aquaporin) and 2
- CRADA for cattle pen trial in Texas
 - Product development with commercial partner
- Evaluation of Antigens 5-8 in Brazil cattle trials
- Evaluating efficacy against ticks on dogs

2011 Vaccine Evaluations in Brazil

In silico structure and function	76%
Midgut/saliva protein Upregulated w/Babesia inf.	63%
Midgut upregulated w/Babesia inf. + <i>In vitro</i> vs Bm86	70%
Epitopes from 6 candidates	86%
V N +	v/Babesia inf. ∕Iidgut upregulated w/Babesia inf. + <i>In vitro</i> vs Bm86

In comparison, Bm86, the antigen in the only commercially available tick vaccine had 39% efficacy

Recent Vaccine Candidate Evaluations

- ARS Cattle Fever Tick Research Lab, Moore Field, TX
 - ♦ Ag 1 and Ag 2 DNA vaccine trials in cattle (2015)
- Louisiana State University AgCenter
 - ♦ Ag 1 and Rm86Texas vaccine trial in white tailed deer (2012-3)
- ARS-Brazil partnerships
 - ♦ CRADA partner to evaluate Ag 5-8 in Parana state (in progress)

Evaluations (Cont.)

Animal health industry partner

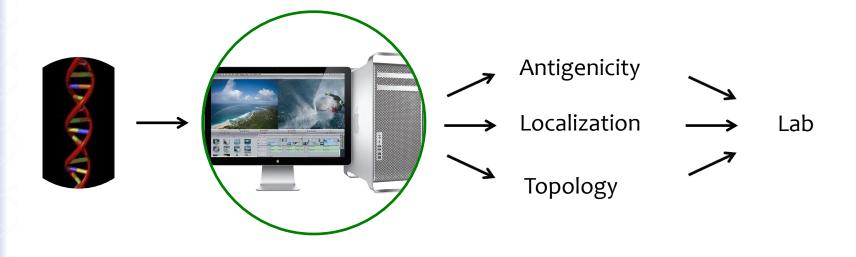
- ♦ Pen and pasture trials planned for USA and Brazil (2017)
- Single peptides cattle trials in Australia (2014)

Two patent applications w/USPO

- ♦ Ag 1 and Ag 2 for use in cattle (filed 2012, granted 2014 and 2016)
- ♦ Ag 1 for use in companion animals (filed 2013, granted 2016)
- Patent applications w/Brazil, Mexico, and Australia

Reverse Vaccinology Approach to Vaccine

Vaccine development starts with bioinformatics genome sequence analysis

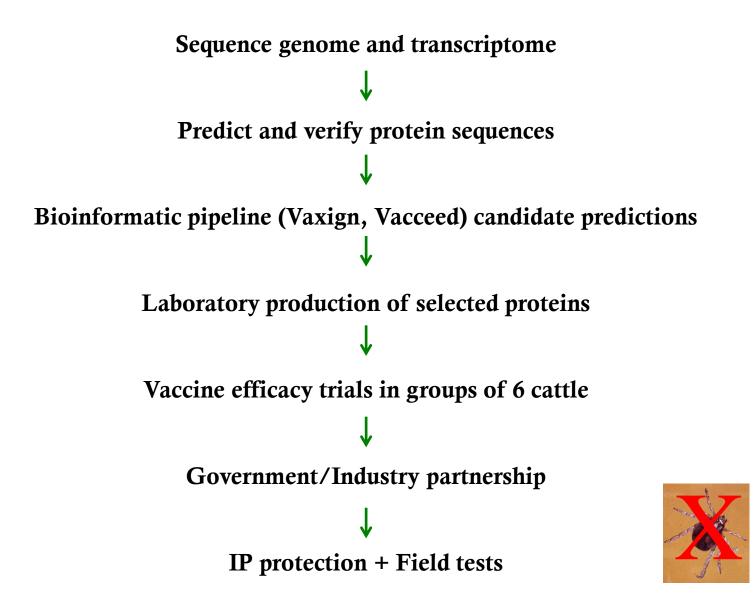

Dr. Rino Rappuoli Pioneer of Reverse Vaccinology

Neisseria meningitidis serogroup B → meningococcal B (MenB) disease

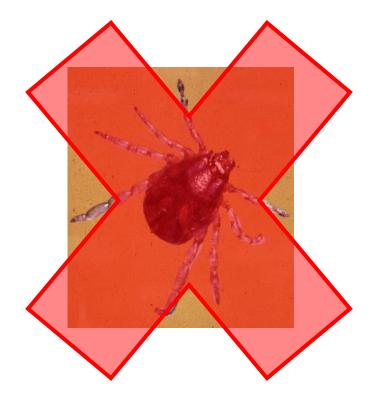
Pizza M, et al. Science. 2000 10;287(5459):1816-20.

Milestone: Novartis's vaccine Bexsero approved by Europe & USA

Reverse Vaccinology Process



Genome


In silico proteome

Vaccine selection criteria

Relevance to Brown Cattle Tick?

Control the ticks

Consortium Leadership Team

- + Felix D. Guerrero, USDA-ARS Kerrville, TX, USA
- + Matthew I. Bellgard, Murdoch University, Murdoch, WA, Australia
- + Robert J. Miller, USDA-ARS Edinburg, TX, USA

Collaborating Organizations

- + U. S. Dept. of Agriculture, Agricultural Research Service
 - + Kerrville, TX, Edinburg, TX, and Beltsville, MD
- + Murdoch University, Murdoch, WA, Australia
- + National Center for Genome Resources, Santa Fe, NM, USA
- + Purdue University, West Layfayette, IN, USA
- + Mississippi State University, Starkville, MS, USA
- + J. Craig Venter Institute, Rockville, MD, USA
- + Queensland Alliance for Ag. and Food Innovation, Brisbane, QLD, Australia
- + Amplicon Express, Pullman, WA, USA
- + Molecular Research LP, Shallowwater, TX, USA

Individuals from each organization (apologies to any that might have been left off)

+U. S. Dept. of Agriculture, Agricultural Research Service

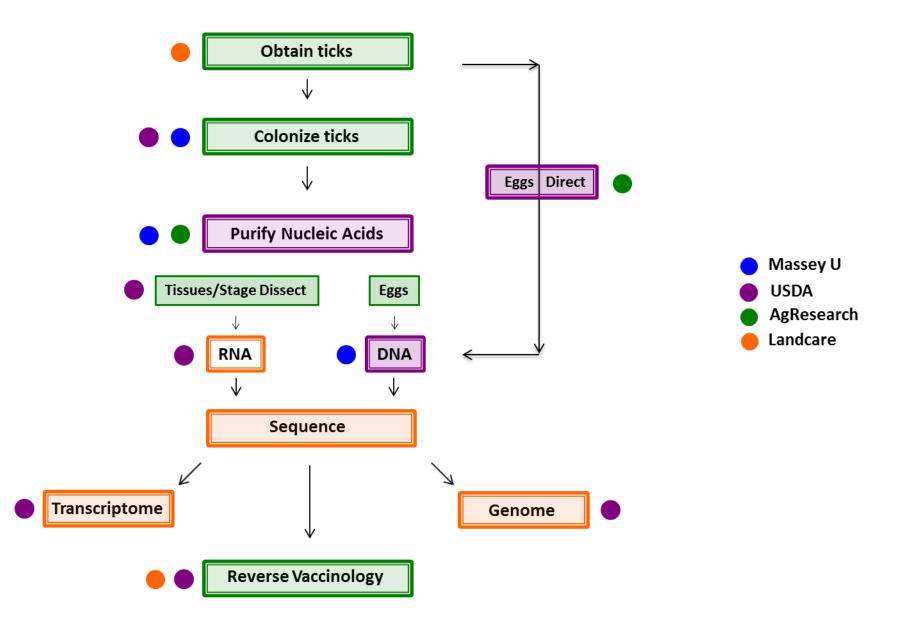
- + Felix D. Guerrero
- + Robert J. Miller
- + Adalberto Perez de Leon
- + Kylie G. Bendele
- + John E. George
- + Daniel Strickman

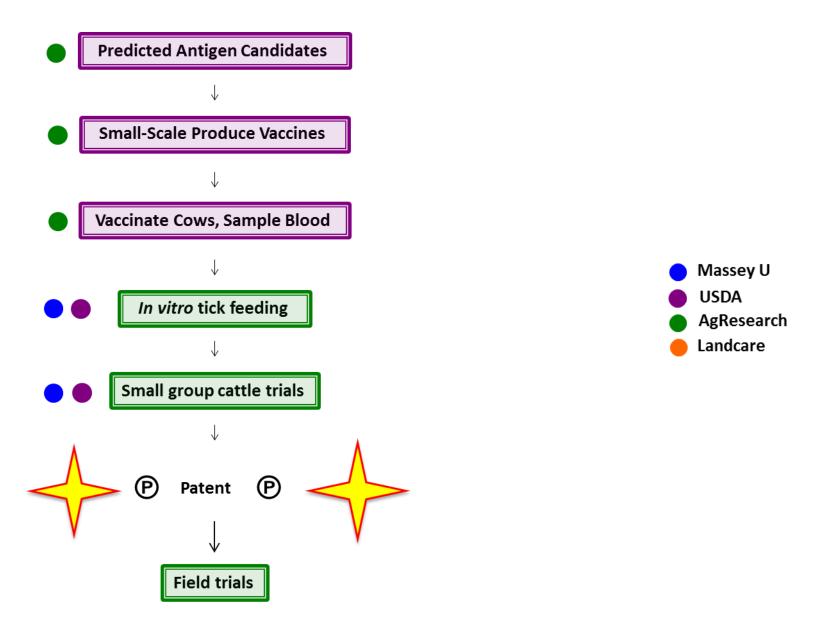
+Murdoch University, Murdoch, WA, Australia

- + Matthew I Bellgard
- + Roberto Barrero
- + Paula Moolhuijzen
- + Adam Hunter
- + John McCook
- + Michael Black

+National Center for Genome Resources, Santa Fe, NM, USA

- + Ernie Retzel
- + Callum Bell
- + Andrew Farmer
- + Jennifer Jacobi
- + Nico Devitt
- + Peter Ngam
- + Patricia Mena
- + Faye Schilkey


- + Purdue University, West Layfayette, IN, USA
 - + Catherine Hill
- + Mississippi State University, Starkville, MS, USA
 - + Daniel G. Peterson
- + J. Craig Venter Institute/TIGR, Rockville, MD, USA
 - + Vish Nene
 - + Appolinaire Djikeng
 - + Shelby Bidwell
 - + Lis Caler
 - + Mathangi Thiagarajan
 - + Linda Hannick
 - + Vinita Joardar
- + Queensland Alliance for Ag. and Food Innovation, Brisbane, QLD, Australia
 - + Ala Lew-Tabor
 - + Manuel Rodriguez Valle
- + Amplicon Express, Pullman, WA, USA
 - + Robert Bogden
 - + Evan Hart
 - + Suresh Iyer
 - + Amy Mraz
 - + Bandie Harrison
 - + Travis Ruff
- + Molecular Research LP, Shallowater, TX, USA
 - + Scot E. Dowd



Ticks to DNA Database

DNA to Vaccine

