

Supporting Partner

Soil Data Interoperability Experiment

105th OGC Technical Committee
Palmerston North, New Zealand
Alistair Ritchie
6 December 2017

Agenda

- Background
- Design
- Demonstrations
- Observations

Interoperability Experiments

- Standardization by doing address real problems
- 'Brief, low-overhead, formally structured and approved initiatives led and executed by OGC members to achieve specific technical objectives'

From: http://www.opengeospatial.org/ogc/programs/ip

 Should lead to the formation of a Standards Working Group that moves the IE results to a formal specification

Soil Data Interoperability Experiment

- OGC and the IUSS Working Group on Soil Information Standards
- OGC Initiators
 - CSIRO (AU)
 - Manaaki Whenua (NZ Initiative Manager and Technical Lead)
 - ISRIC World Soil Information (NL)
- Active Participants
 - Federation University of Australia (AU)
 - USDA Natural Resource Conservation Service (US)
 - Agribiology and Pedology Research Centre (IT)
 - USGS (US)
 - Horizons Regional Council (NZ)
 - Tumbling Walls (US)

Motivation

- SOIL is essential to ALL life
- The most complex biological material on the planet
- We need to better understand and manage our global soil resources
 - Primary industry; development; food security; natural hazards
- We just don't know enough to do this well
- Urgent need to exchange data and information on our soils
- Need a structured, flexible and long lived global soil information system
- Well defined standards are essential to this system

Motivation

• Reconcile five existing standards into a single standard ...

SITUATION: THERE ARE 14 COMPETING STANDARDS

Not quite ... point to prove ... can use existing standards

Use Cases

Use Case 1: soil data integration & publication

Publication of heterogeneous soil data from different databases at different agencies

Use Case 2: soil sensor data

Publication of data from sensors monitoring dynamic soil properties

Use Case 3: soil property modelling and predictions

Provision of high resolution estimates of functional soil properties generated using digital soil mapping techniques – e.g. GlobalSoilMap project soil property predictions

Use Case 4: pedo-transfer functions

Process observed and interpreted soil properties using of pedo-transfer functions - algorithms that calculate additional interpreted soil properties

Soil Observations

ISO19156/OGC10-004r3 - Observations and Measurements

Soil Sensors

OGC15-043r3 - Timeseries Profile of Observations and Measurements

Soil Descriptions

Reviewed five existing standards – no 'winner'

ANZSoilML; e-SOTER SoTerML; INSPIRE Soil; ISO SoilML; IUSS/ISO 'Wageningen Proposal' (effort to reconcile ANZ and ISO)

Implementation

Demonstration - Soil time series data

OGC Soil Interoperability Experiment

Properties:

- Soil Moisture
- Soil Temperature
- Rainfall

Contributors

- Manaaki Whenua (NZ)
- Horizons Regional Council (NZ)
- USGS (US)

Demonstration – Soil property surfaces

Contributors

- CSIRO Land and Water (AU)
- Federation University of Australia (AU)

Demonstration - Soil descriptions

Use Cases One and Four

- Field observations
- Sampling
- Laboratory analyses
- Pedo-transfer functions

Contributors

- Manaaki Whenua (NZ)
- CSIRO Land and Water (AU)
- Federation University of Australia (AU)
- ISRIC World Soil Information (NL)

Demonstration - Soil descriptions

Observations

- Model not advanced as hoped
 - Accomplished a lot with O&M + derivatives
 - Soil IE Data model flawed and rudimentary
- Needed to use an unhappy mix of protocols and encodings
 - WxS + GML (+ GeoJSON)
 - Linked Data API + RDF
- Archaic web services and encodings
 - XML not desirable/fashionable
 - Unusual protocols for web developers to work with
 - Need to support modern web practices

Observations

- Removed the tight conceptual/implementation binding
 - Information Models/Ontologies hugely valuable
 - Tight binding can hinder adoption/compromise
 - Model can stay stable (and should)
 - Tech can evolve at its own place
 - If a standard dies because technology changes we've failed
- Domain parochialism/focus
 - There's a lot of common ground between domains
 - Solutions developed in specific contexts
 - Potential for a core environmental data ontology
 - Example: WaterML 2.0 Pt 1 -> TimeseriesML 1.0

Observations

- Is that light the end of the tunnel?
- Alternatives to XML being formalized
 - JSON in test beds and interoperability experiments (ELFIE)
 - Introduction of OWL/RDF
- Promising developments in web service standards baseline
 - WFS 3.0 (OpenAPI, XML, JSON, GeoJSON support)
 - Development focus on basic requirements (rapid) then edge cases (developed over time)
- Developing a set of tools consortium must embrace them

