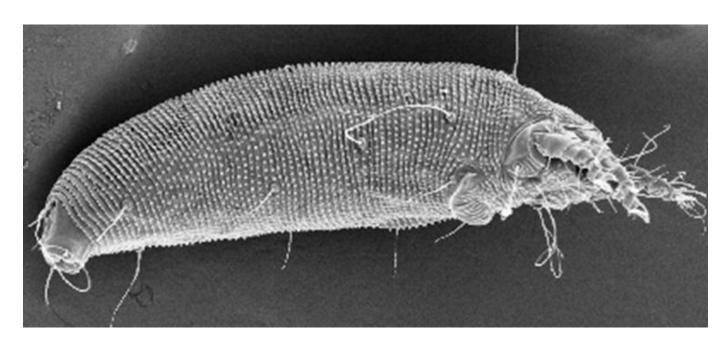


Microbes, mites and broomgalls: unseen links, complex associations?

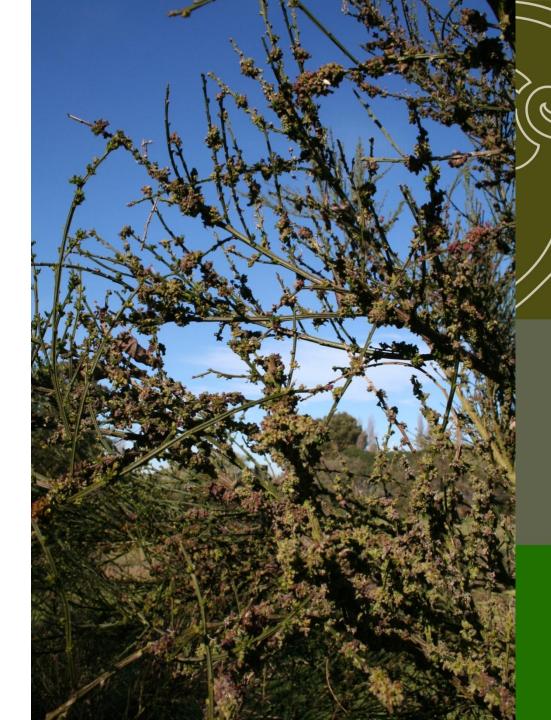
Chantal Probst, Zhi-Qiang Zhang, Sarah Dodd, Quentin Paynter, Nitish Anand, Varsha Mala , Hugh Gourlay and Stan Bellgard


Talk overview

- Background
- Formation of galls
- Gall ecology
- Link to pathogens
- NZ inoculation experiment
- Microbial surveys
- Future work

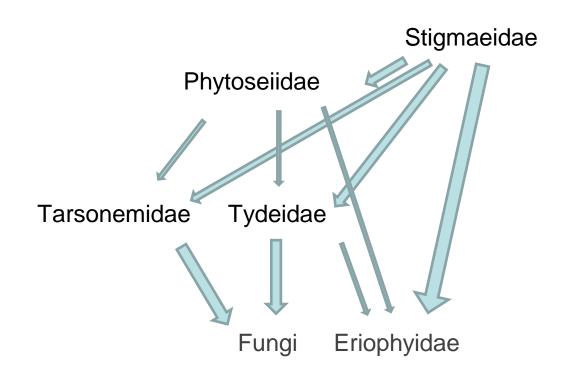
Background

- Scotch broom serious weed in much of NZ affecting pasture, forestry and ecosystems.
- Eriophyid Gall mite, Aceria genistae, was introduced in 2008 to control broom



Broom-gall formation

- Mites feed on buds
- Development of distorted mass of small leaves
- Transformation into irregular, rounded, pubescent galls (5 – 30 mm)
- Death of branches and sometimes whole plants



Severely attacked broom at Lincoln – very promising biocontrol agent

What is going on in this new resource – some ecology

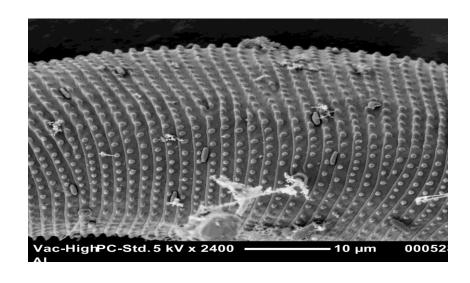
 Our studies show that lots of NZ mites have colonised the galls – a complex miniature food web

How do the mites form galls?

 Before the mites arrived similar but smaller galls were occasionally observed on broom in NZ

No gall

Galls with mites


Gall without mites

- Overseas research in 2008 showed that a related gall mite increases the frequency and severity of mango malformation disease
- Is the broom mite doing something similar with a pathogen that was previously only causing occasional small galls in NZ?

Interaction between mites and microbes?

- SEM showed presence of microbes on surface of mites
- Same size as bacteria isolated from galls
- Could mites be transmitting a gallforming pathogen?

 Also raises the issues of what biota might have arrived on the mites when they were introduced into NZ

Dissecting the roles.....

Acarology – ecology

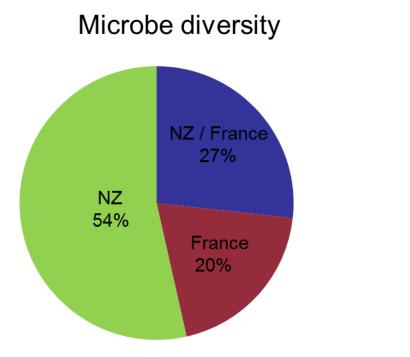
- Dissection of galls and isolation of mites
- Interactions between different mites
- Mite feeding trial
- Selective miticide spray trial
- Selective fungicide spray trial

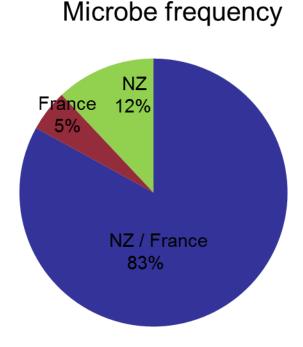
Plant pathology

- Surface sterilisation of galls and stems
- Effect of artificial inoculation of microbes in/on broom
- Isolation of fungi and bacteria from French and New Zealand broom galls and stems
- DNA sequence identification

NZ inoculation experiment

- Microorganisms were recovered from broom galls
- Three fungi and one bacterium were selected and inoculated on broom seedlings
- Seedling height was recorded every 2 weeks, wet and dry weights of root and aerial biomass at the end of trial, presence/absence of galls
- Experiment was repeated three times


Absence of evidence


- Microbes were recovered from inoculated plants
- No differences between treatments
- Microbes isolated from galls were not able to induce gall formation
- Aceria genistae primary gall forming agent our hypothesis for gall-formation with a vectored pathogen is rejected

Microbial complexity

- Rich microbial biota in galls in France and NZ.
- Some only in France, some only in NZ, and some common to both.

Microbial complexity

- Could some new to NZ have arrived on the mite?
- Lack of baseline data in NZ makes current comparisons difficult.
- So we can't be sure whether the detection of "overseas" organisms in NZ broom galls indicates introduction or lack of local detection.
- Modern molecular techniques are revealing all sorts of new stuff!

Current studies

- Trophic-levels studies investigating mitemite interactions i.e. predator prey dynamics.
- Selected mite-fungi feeding trials - to determine mite-fungal feeding preferences.

- Potential further microbe-broom studies using fungi from overseas.
- Examination of the role of other microbes in gall formation e.g. viruses.

