

Molecular identification of weeds: *Tradescantia* Dagmar Goeke Ecological Genetics group Landcare Research

Biosecurity Bonanza

Wellington, 6th June 2012

Biological control to beat weeds

Molecular tools for "species" identification

Biological control to beat weeds

How many invasive species are

in New Zealand (NZ) ?

T. big leaves, fluminensis, albiflora

Biological control to beat weeds

What is the native range of our

invasive Tradescantia?

⇒ somewhere in Brasil

Approaching genetic diversity

• Sequence data analysis

• DNA content measurements

• Microsatellite markers

Tradescantia DNA sequence data

trnL-trnF (chloroplast region)

Phylogenetic hypothesis for 68 within the Commelinaceae family, including <u>17 out of about 70 Tradescantia species</u>*

*Burns et al., 2009,

Phylogenetic Studies in the Commelinaceae Subfamily Commelinoideae Inferred from Nuclear Ribosomal and Chloroplast DNA Sequences, Systematic Botany, 36(2):268-276.

DNA extraction

Sequence data analysis

- Amplification of diagnostic DNA region with universal primer combinations
- Sequencing and comparison to Genebank data

Tradescantia DNA sequence data

trnL-trnF (chloroplast region)*

20 samples of invasive Tradescantia (New Zealand)

18 samples of "related" *Tradescantia* (Brasil)

*Burns et al., 2009,

Phylogenetic Studies in the Commelinaceae Subfamily Commelinoideae Inferred from Nuclear Ribosomal and Chloroplast DNA Sequences, Systematic Botany, 36(2):268-276.

Tradescantia DNA sequence data

trnL-trnF (chloroplast region)

identical sequences for

invasive *Tradescantia* in NZ and 9 samples from Brasil

• NZ material: *trnL-trnF* DNA region not diagnostic

• easy identification tool for foreign exploration

Approaching genetic diversity

• Sequence data analysis

• DNA content measurements

• Microsatellite markers

Polyploidy in plants

15% of angiosperm speciation events are accompanied by ploidy increase¹⁾

Tradescantia: <u>diploid – 22ploid</u> (sets of chromosomes),

5-7 unique chromosomes, 12 - 132 in total²⁾

Humans: <u>diploid</u>, 23 unique chromosomes, 46 in total

- 1) Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH, 2009, "The frequency of polyploid speciation in vascular plants", *Proc. Natl. Acad. Sci. U.S.A.* 106 (33): 13875–9.
- 2) DNA content in *Tradescantia*, Arturo Martínez and Héctor D. Ginzo, 1985, Canadian Journal of Genetics and Cytology, Vol. 27, No. 6 : pp. 766-775

Principle of flow cytometry

New Zealand material tested only:

fresh plant material required !

K Annu. Rev. Ecol. Evol. Syst. 38:847–76

NZ Tradescantia flow cytometry data

Comparison with Chinese spring wheat, Triticum aestivum							
(34.6 pg, 2C value; Lee et al. 1997)							
	taxa	ratio	2C value, in picograms				
T. a	lbiflora	1:2.3	14.9				
T. "bi	g leaves"	1:2.3	14.9				
T. flu	minensis	1:3.0	11.7				

Approaching genetic diversity

• Sequence data analysis

• DNA content measurements

• Microsatellite markers

Microsatellites = <u>Simple Sequence Repeats</u>

Prior knowledge of whole genome required: Next Generation Sequencing

	:	Sample A- 3 rep	peats	
Fluorescent labeled primer	CTT (tri-nucleotide) microsatellite and	flanking region	
cc	AATTGGCT	стт-стт-	CTT ATGCC	ΤΤΤ
GGCCG	TTAACCGA	GAA-GAA-	GAATACGG	A A A
			Flu lab	orescent oeled primer
		Sample B- 4 re	epeats	
Fluorescent labeled primer	CTT (tri-nucleo	tide) microsatellite	and flanking region	
CCGGC	AATTGGCT	стт-стт-	CTT-CTTA	TGCCTTT
GGCCG	TTAACCGA	GAA-GAA-	GAA-GAATA	ACGGAAA
	Capillary- genetic ar	halysis		Fluorescent labeled prime
<u> </u>	100	, v	200	
6000		I		
4000		A		
2000 —	٨			
0	11)1		

→ 6 microsatellite markers identified for Tradescantia fluminensis (NZ)

SSR methodology

9 samples of Tradescantia (Brasil) with identical trnL-F

SSR methodology

 \longrightarrow

9 samples of Tradescantia (Brasil) with identical trnL-F

Tradescantia SSR data

Tradescantia fluminensis (NZ) from outskirts of Curitiba, Brasil

TRADESCANTIA: WHO IS WHO?

- Three species of invasive *Tradescantia* in NZ identified via
 - DNA sequence: not diagnostic for weedy *Tradescantia* sp. in NZ, quick tool for foreign exploration
 - DNA content: T. fluminensis **#** T. big leaves/albiflora
 - SSR markers: distinct genetic variation
- Native range of T. fluminensis (NZ) identified

TRADESCANTIA: FUTURE QUESTIONS

• Native range of T. albiflora, T. big leaves, and T. fluminensis ?

• Breeding system, can these plants reproduce in other ways ?

• How does this relate to other weed groups ?

TAKE HOME MESSAGE

ACKNOWLEDGEMENTS

- Landcare Research Capability Fund
- Gary Houliston, Peter Heenan, Simon Fowler
- Lindsay Smith, Chris Winks
- Duckchul Park, Murray Dawson

MASTERING THE GENETIC VARIATION IN TRADESCANTIA

T. big leaves, fluminensis, albiflora ?

