

Rangitaiki Landscape Scenarios Participatory Process Testing an ecosystem service based approach to inform decisions

Suzie Greenhalgh & Fraser Morgan LINK Seminar November, 2016

Landcare Research Manaaki Whenua

forests - products - innovation

Ecosystem services classification

PROVISIONING Products obtained from ecosystems	REGULATING Benefits from regulation of ecosystem processes	CULTURAL Non-material benefits obtained from ecosystems							
Food & fibre Freshwater Biomass fuel Wildfoods Ornamental resources Biochemical, natural medicines & pharmaceuticals Genetic resources	Air quality regulation Climate regulation Water regulation Erosion control Water purification & waste treatment Biological control Disease regulation Pollination Natural hazard regulation	Recreation & ecotourism Ethical & spiritual • Aesthetic values • Spiritual & religious values • Cultural heritage values • Social relations • Sense of place • Cultural diversity Inspirational & education • Inspiration • Educational values • Knowledge systems							
SUPPORTING									

Services necessary for the production of all other ecosystem services

Nutrient & water cycling Primary production (e.g. photosynthesis) Production of atmospheric oxygen Provisioning of habitat Soil formation & retention

der

11 -1 011

Tangible and Intangible Benefits

Provisioning

Cultural

Supporting

Regulating

Ecosystem Services

Cultural Values

CC

Mātauranga Māori

BEST Decision-making Framework

- Describing the decision to be made
- Prioritisation of relevant ecosystem services

State, trend & knowledge

• Condition & trend of relevant ecosystem services

Stop if no

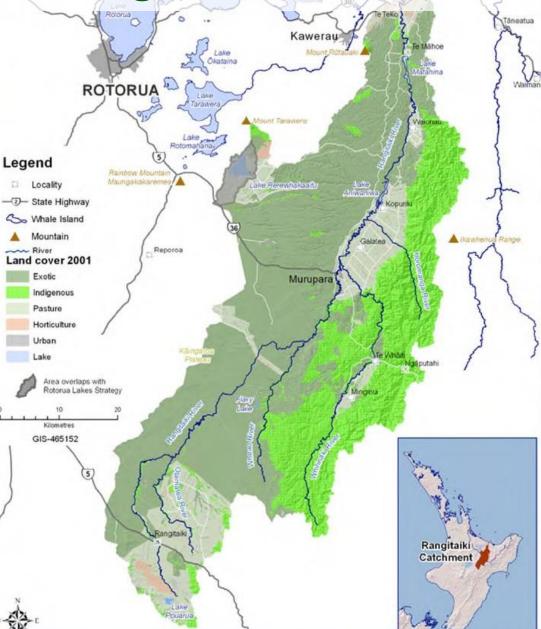
 Key direct & indirect drivers (legal, market, environmental, social, etc)

Scenario planning

- Intervention options
- Risks & opportunities and strategy

Implementation

• What actions to be undertake by whom

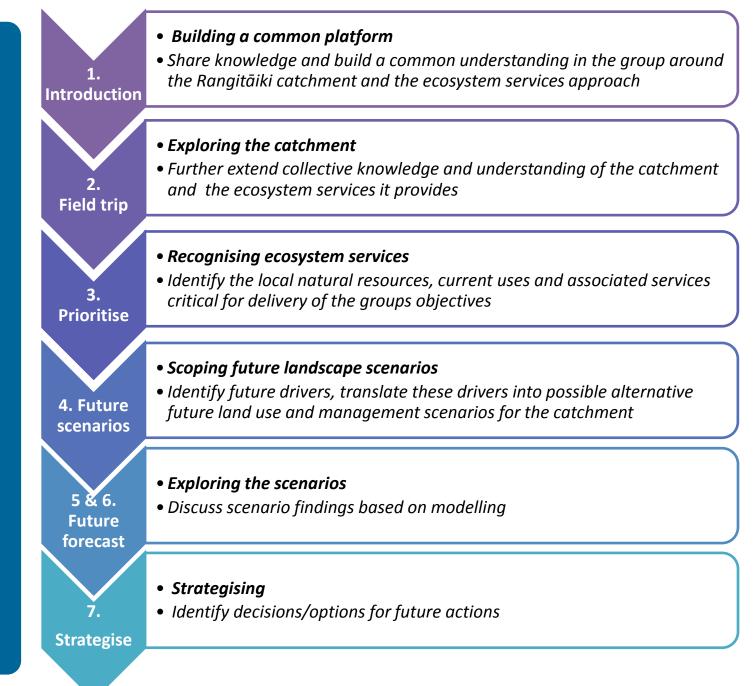

Evaluation

• Track indicators, implementation & capacity

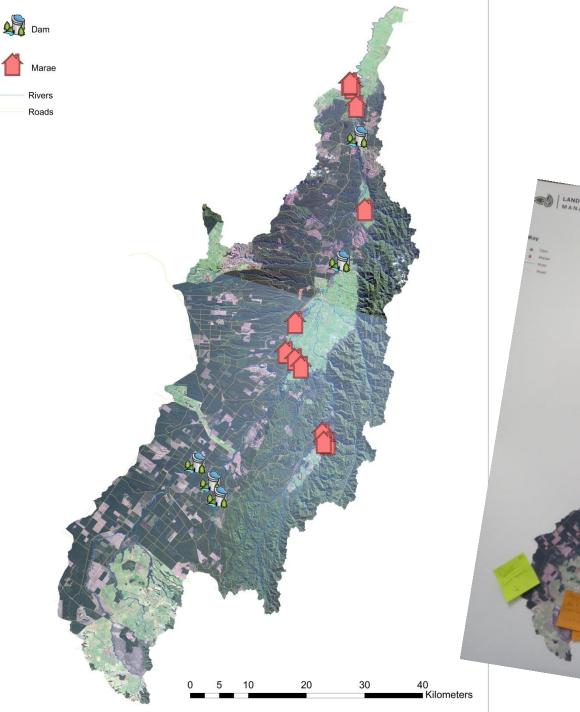
Purpose of the process

- Explore future options for the Rangitaiki landscapes with community members
- Identify development opportunities
 - in a way that resonated with the needs & aspiration of the community
 - that considered the range of ecosystem services
- Test how ecosystem service concepts can support natural resource decisions

Piloting the BEST Framework in the Rangitāiki


Why this catchment?

- Co-governance Forum --The Rangitāiki River Forum -have clear vision for the catchment
- Diversity of landscapes, land uses & stakeholders
- Multiple potential future options
- Variety of implementation pathways

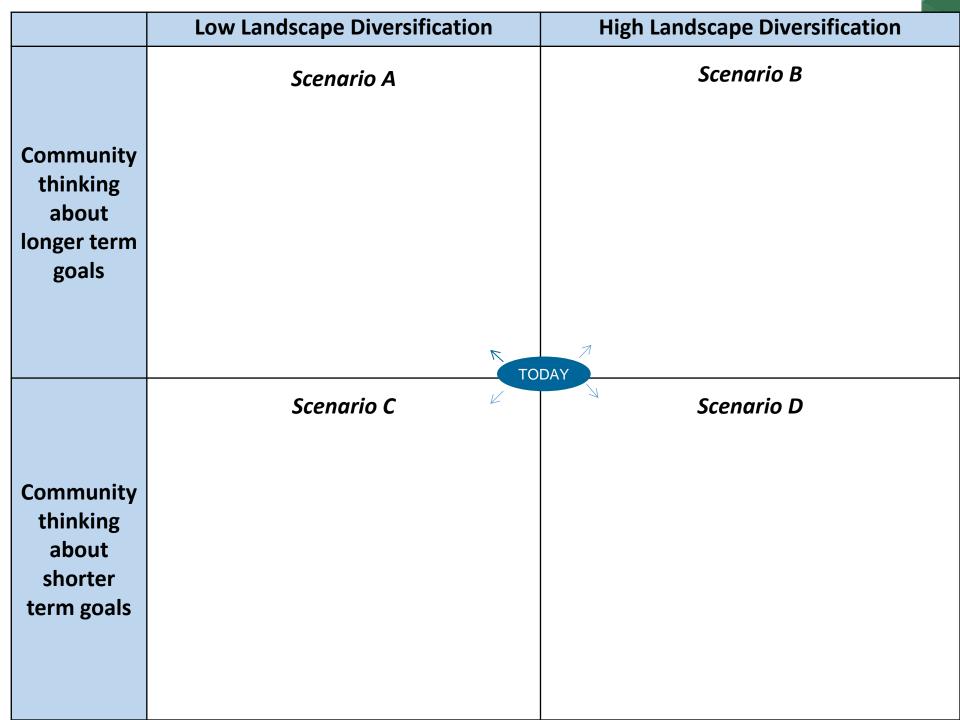

The Group

Involved 12 people representing:

- Conservation & NGO
 - DOC
 - Environmental NGO (Fish & Game)
- Māori 2 iwi groups, Māori dairy farmer
- Farming
 - Sheep & beef, dairy & dairy cooperative
- Local government
 - Regional councillor, district councillor
 - Regional Council staff member
- Tourism
- Missing: forestry & electricity generators

Seven workshops

Rangitāiki Catchment

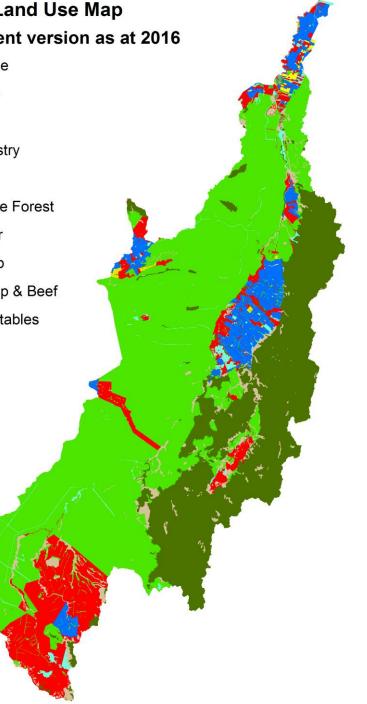

Ecosystem Services: Prioritisation Questions

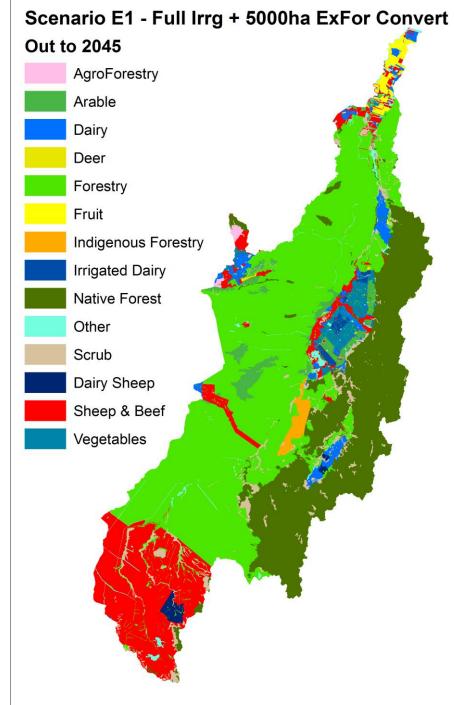
Dependency:

- 1. Does current land use management in the catchment depend on this ecosystem service?
- 2. Does this ecosystem service have cost-effective substitutes/alternatives?

Impacts:

- 1. Is the quality or quantity of this ecosystem service changing?
- 2. Is the change positive or negative?
- 3. Is the change impacting on the ability of others to use/benefit from this ecosystem service?


	Low Landscape Diversification	High Landscape Diversification
	Scenario A	Scenario B
		↑ indigenous forest logging
		↑ agroforestry
Community		个 irrigation
thinking about		dairy → high value crops
longer term		个 kiwifruit
goals		
U		Tourism: mix of options available
		Social/cultural: 个 jobs, cohesion, cultural
		use, biodiversity
	Scenario C	Scenario D
		个 dairy
Community		个 kiwifruit
thinking about		some Forestry $ ightarrow$ Sheep and Beef
shorter term goals		Tourism/social/cultural: little change

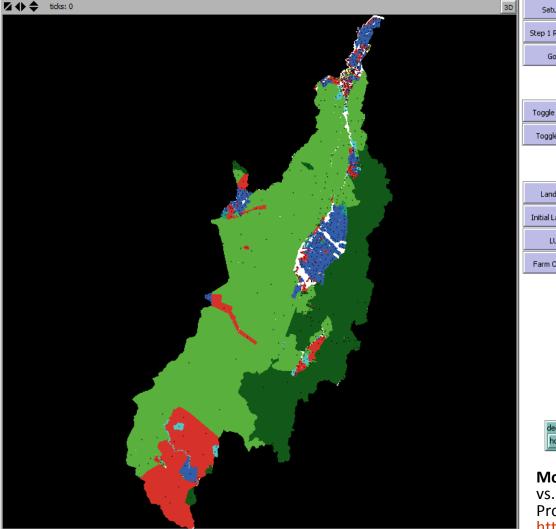

	High Landscape Diversification						
	Scenario B						
Community							
thinking	↑ indigenous forest logging						
about	↑ agroforestry						
longer term	个 irrigation						
goals	dairy \rightarrow high value crops						
	个 kiwifruit						

Scenario D	Scenario E1	Scenario E2				
As in Scenario B	As in Scenario D	As in Scenario D				
Southern part: 个 sheep and beef 个 dairy sheep	5,000 ha of LUC 3 Forestry → vegetables	50,000 ha of LUC 4 Forestry → Sheep and Beed				
Central Plains: Fully irrigated ↓ dairy ↑ high value crops						

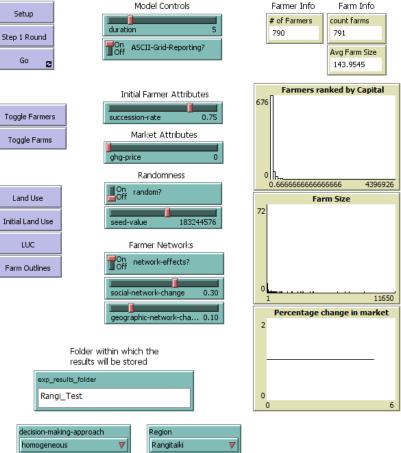
Current Land Use Map Best current version as at 2016

Summary - % Change vs Current

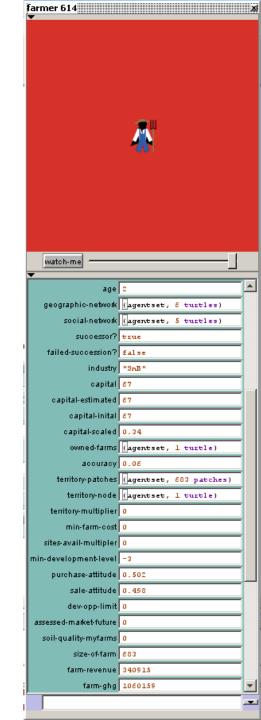
	Scenario B - Long Term	Scenario C - Short Term	Scenario D	Scenario E1	Scenario E2
Profit	23.5%	5.5%	28%	30.5%	19.5%
Net GHG Emissions	1.7%	-2.4%	-5.8%	-10.4%	-55.2%
N Leaching	4.5%	6.2%	2.7%	7.4%	24.4%
P Loss	-2.0%	0.8%	1.0%	0.9%	25.3%
Sediment	-2.9%	0.1%	0.7%	1.2%	19.8%
E.coli	-7.2%	7.4%	-13.7%	-13.4%	45.9%
Labour*	~101%	~9%	~182%	~186%	~192%


* Related to primary production activities only

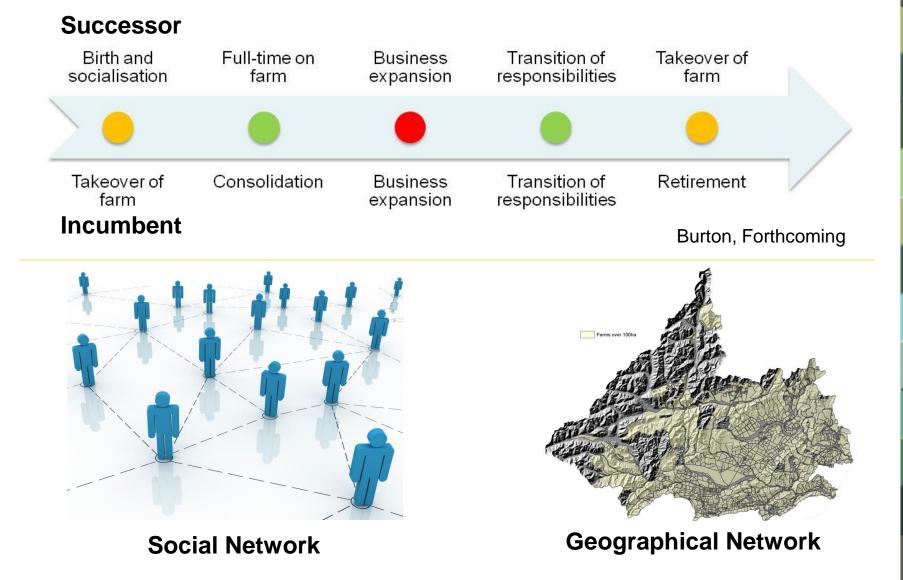
Scenario Modelling


- Guide Scenario E1
- SRDM
- Economic (Current Prices)
 - Prices
 - Production
- Social
 - Change in succession
 - Effects of
 - Strong vs. Weak networks

ARLUNZ



Morgan FJ, Brown P, Daigneault, A. 2015. Simulation vs. Definition: Differing Approaches to Setting Probabilities for Agent Behaviour. Land. 4(4):914-937. <u>http://dx.doi.org/10.3390/land4040914</u>


Morgan FJ, Daigneault A. 2015. Estimating Impacts of Climate Change Policy on Land Use: An Agent-Based Modelling Approach. PLoS ONE 10(5). <u>http://dx.doi.org/10.1371/journal.pone.0127317</u>

ARLUNZ Farmer agents

- Satisficing approach
- Primarily profit/production driven
- Land use change is tempered by:
 - Land use
 - Farm stage
 - Social and geographic networks
- Behaviour parameterised using specified probabilities

ARLUNZ - Time and Networks

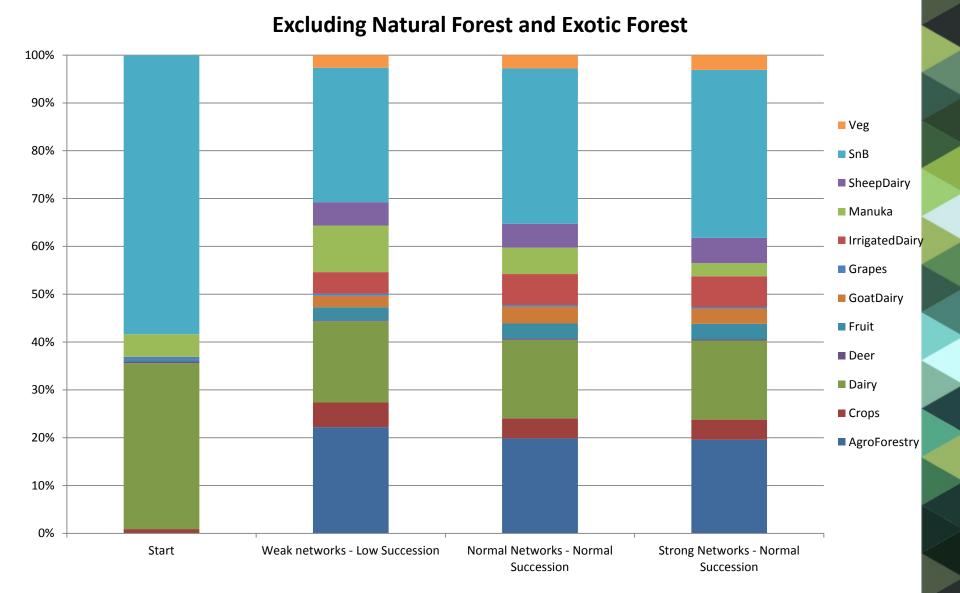
Weak Networks Normal Succession Strong Networks Normal Succession

Sheep and Beef
Dairy
Forestry
Crops
Deer
Fruit
Natural Forest
Manuka
Veges
Sheep Dairy
Goat Dairy
AgroForestry

Weak Networks Low Succession

> Sheep and Beef Dairy Forestry Crops Deer Fruit Natural Forest Manuka Veges Sheep Dairy Goat Dairy AgroForestry

Strong Networks


Low Succession

Summary - % Change vs Current

	Scenario D	Scenario E1	Weak network Low succession	Normal network Normal succession	Strong network Normal succession
Profit	28%	30.5%	14.7%	18.4%	20.9%
Net GHG Emissions	-5.8%	-10.4%	8.5%	8.9%	8.8%
N Leaching	2.7%	7.4%	-0.9%	7.6%	9.8%
P Loss	1.0%	0.9%	-24.7%	-13.3%	-10.1%
Sediment	0.7%	1.2%	-6.1%	-5.9%	-6.1%
E.coli	-13.7%	-13.4%	-29%	-30%	-27%
Labour*	~182%	~186%	~49%	~46%	~51%

* Related to primary production activities only

Change in land use

Regulating Services

Cultural Services

Scenarios	D	E1	WN, LS	NN,NS	SN, NS
Air quality reg: pollen		1111	1	1	1
Climate reg	ļļ	ļļ	1	1	1
Water reg: flow			1	4	L.
Erosion control		Ļ	1	1	
Water purification N	•	ļļ		Ļ	Ļ
& waste treatment P			11	1	1
Biological control					
Disease regulation	11	11	111	111	111
Pollination					
Natural hazard reg					

Scenarios	D	E1	WN LS	NN NS	SN NS
Recreation & eco- tourism					
Ethical & spiritual values					
Educational & inspirational values					

Supporting

Services

Increase	1
Decrease	Ļ
Little/no change	—
No data (estimate)	1-1

Scenarios	D	E1	WN,LS	NN,NS	SN,NS					
Habitat provision: all forest	ļļ	111	t	I	Ţ					

Provisioning Services

Scenarios	D	E1	WN,LS	NN,NS	SN,NS
Crops	1111	11111	1111	1111	1111
Livestock: Milk		III	Ļ	Ļ	Ļ
Livestock: Meat	111	111	11	↓↓	11
Capture Fisheries					
Wildfoods: honey	t.	L.	11	1	Ļ
Timber & wood	III	1111	11	11	11
Fibres & resins	111	111	ļļ	ļļ	ļļ
Ornamental resources					
Biomass Fuel		↓↓↓↓	11	11	11
Freshwater					
Genetic resources					
Biochemicals, natural medicines & pharmaceutals: Rongoa & ginseng	↑ Î	† 1	+ 11+	– 11	+ 11

Opportunities Identified

- Re-configure catchment conversations
- Utilise the enormous forest areas differently
- Grow tourism
- Raise the profile of the catchment
- Develop rongoā products
- Undertake spatial planning for the catchment
- Attract big business and industry to the catchment
- Make this catchment a place to study

What were the hard bits?

- Availability of knowledge/data/info
- Choice of indicators
- How to include indigenous cultural values
- Language & communication
- Use in decision-making

Key messages

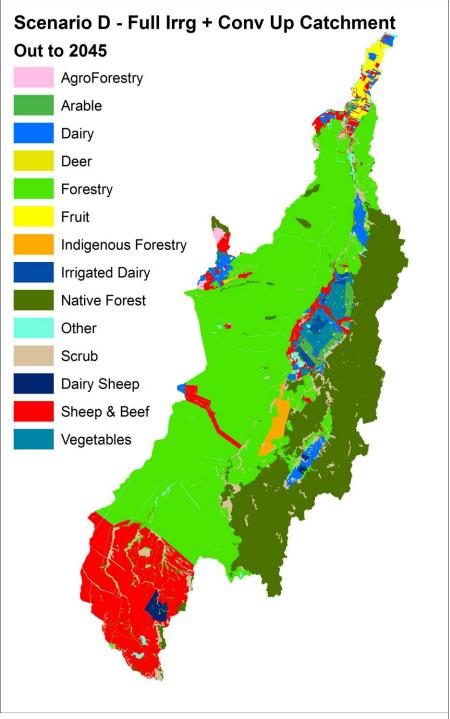
- Clear messaging throughout the process
- How indigenous peoples value are recognised
- Usefulness of building up the modelling to tell the story with the group
- A good lunch goes a long way!

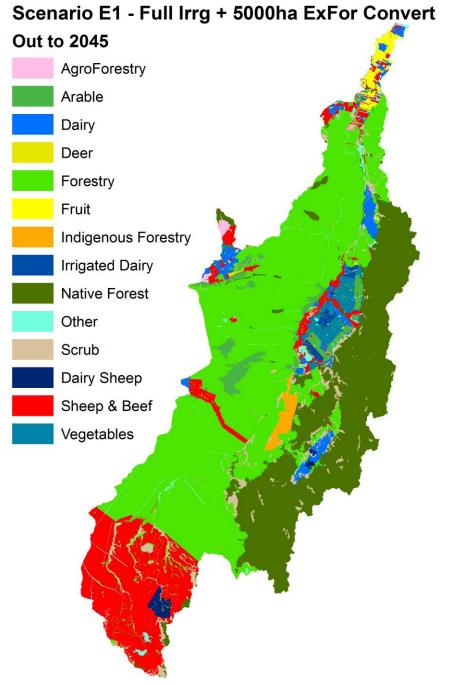
Many Thanks

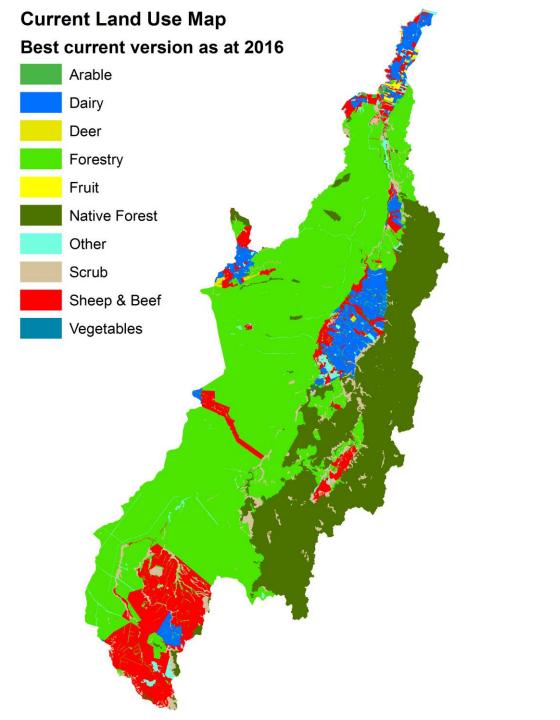
Suzie Greenhalgh

Greenhalghs@landcareresearch.co.nz

Fraser Morgan Morganf@landcareresearchco.nz






		Ecosystem service													
		Global Climate	Regional and Local Climate	Water Timing and Flows	Erosion Control	Water Purification	Waste Treatment	Disease Mitigation	Pollination	Habitat Provision	Nutrient Cycling	Soil Formation	Primary Production	Water Cycling	
	Indigenous Forest	6	16	30	12	30	0	3	0	18	32	1	15	5	
Forest	Deciduous Hardwoods	0	0	1	1	0	0	0	0	0	2	0	0	0	
	Exotic Forest	12	12	36	18	28	0	2	0	12	49	8	14	10	
	Manuka/ Kanuka	2	1	3	3	1	1	0	0	3	8	0	1	1	
	Fernland	0	0	0	0	0	0	0	0	0	1	0	0	0	
Scrub and/or	Matagouri	1	0	1	1	0	0	0	0	0	3	0	0	0	No. of
Shrubland	Sub-alpine Shrubland	0	1	1	0	1	0	0	0	0	2	0	0	0	No. of Studies
	Mixed Exotic Shrubland	0	1	0	0	1	0	0	1	1	0	0	1	0	0
Cover	Gorse and/or Broom	1	0	0	0	0	0	1	0	0	1	0	0	1	6 - 10 11 - 20
Land Cover	Flaxland	0	0	0	0	0	0	0	0	1	0	0	0	0	21 - 30 > 31
Grassland, sedgeland	Tall Tussock Grassland	1	7	17	1	15	0	0	0	7	16	1	6	0	- 01
& saltmarsh		2	1	4	1	3	0	0	0	4	9	1	4	1	
	High Prod. Exotic Grassland	17	17	41	22	35	1	5	1	21	51	8	13	10	
Onestand	Short-rotation Crops	4	1	7	4	3	0	0	0	0	12	2	3	2	
Cropland	Perennial Crops	0	1	1	0	1	1	2	0	0	0	0	0	0	
	Urban Parkland	0	0	0	1	0	0	0	1	0	1	0	0	0	
Artificial surfaces	Built-Up Area (Settlement)	0	3	3	1	3	0	3	0	3	1	0	0	0	
	Surface Mine & Dump	0	0	0	0	0	0	0	0	0	0	0	0	0	

Pathways for the Rangitāiki

objectives	Potential Ecosystem services Indicators
Tuna are protected	Water quality, N, P and sediments
	- Little impact
Habitats that support indigenous biodiversity	Area of native vegetation
are created protected & enhanced	- Depends (only small though)
Water quality restored	Water quality: N, P and sediments
	- P improves
	- N likely increases
Prosperity is enabled within limits	Number of jobs & catchment profit
	- Improves
Relationship between communities is	Strengthened networks between land owners
encouraged	show a range of benefits which we modelled
Practice of kaitiakitanga is recognised &	Cant be modelled, but can be practiced
provided for	
Naturalness is respected	Area of native forest vegetation unchanged,
	but slight increase in native scrub (Manuka)
Access to river is maintained and enhanced	Cant be modelled, but can be practiced

Preferred Scenarios

→Somewhere between D and E1

- Scenario D:
 - Galatea is irrigated mostly fruit/veg & some dairy
 - Top of catchment is SNB

• Scenario E1

- Galatea is irrigated mostly fruit/veg & some dairy
- Top of catchment is SNB
- ~5,000 ha of LUC3 land in Kaiangaroa Forest moves into veg (depending on LUC suitability)