Pesty Science

Is Predator-Free NZ a reasonable reality or an impossible dream?

Predator-Free NZ

Offshore islands

Offshore islands

Mainland islands

Offshore islands

Mainland islands

Peninsulas

Two Questions

What do we want?

James Reardon

Which species?

Nga Manu Images

Red deer

Norway rat

Feral goat

Ship rat

Brushtail possum

Which pests?

Possums

Stoats Ferrets

Ship rats Norway rats

House mice

Which pests?

Possums

Stoats Ferrets

Ship rats
Norway rats

House mice

Weeds

Hedgehogs

Rabbits

Invertebrates

Plant Pathogens

Which pests?

Definitions

Control:

Reduction of pests to low density

Sometimes sustained in perpetuity

• Eradication:

One-off, complete removal of all pests Not necessary to repeat

Island eradications

1985-2010:

14 forest bird species established by translocation

On 44 islands from which pest mammals eradicated

Bellingham et al 2010

Innes & Fitzgerald

Sanctuary area

48 mainland sites
 34,800 ha

14 near-shore and freshwater islands
 18,250 ha

• Total area 53,050 ha

cf. pest-free islands – 36,480 ha

Total sanctuary area is 0.2% NZ land area

115 000 ha

Has pest species of interest

Community engagement in pest control

?What do we need to know?

To achieve predator-free status for Banks Peninsula

Challenges

Technical

Ecological

Social

Financial

Political/policy

Technical

Control of pests from the air

Control of pests from the air

Control of pests from the ground

Trap cost \$9

Others \$60

Nugent, Warburton et al

Ecological

Hawke's Bay Possum Genetics

Hypothetical possum connectivity map

© Nga Manu Images

Social

Engaging people with science

BMC Ecology

Commentary

208

Open Access

Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

Robert K Swihart*1, Donald L DeAngelis2, Zhilan Feng3 and John P Bryant4

Wildlife Research, 2000, 27, 69–74

The role of non-toxic prefeed and postfeed in the development and maintenance of 1080 bait shyness in captive brushtail possums

J. G. Ross^A, G. J. Hickling^A, D. R. Morgan^B and C. T. Eason^B

^AEcology and Entomology Group, PO Box 84, Lincoln University, Canterbury, New Zealand ^BLandcare Research, PO Box 31-011, Lincoln, Canterbury, New Zealand

Abstract. Shyness to sodium monofluoroacetate (1080) in cereal bait can persist in sub-lethally poisoned por (*Trichosurus vulpecula*) populations for at least 2 years. We investigated the use of non-toxic cereal 'prefeed 'postfeed' as ways of inhibiting and overcoming such shyness. The postfeed result was also compared with ch

Available on-line at: http://www.newzealandecology.org/nzje/

SHORT COMMUNICATION

Large-tree growth and mortality rates in forests of the central North Island, New Zealand

Sarah J. Richardson^{1*}, Mark C. Smale², Jennifer M. Hurst¹, Neil B. Fitzgerald², Duane A. Peltzer¹, Robert B. Allen¹, Peter J. Bellingham¹ and Peter J. McKelvey³

Austral Ecology (2001) 26, 571-581

Heterogeneity in vertebrate and invertebrate herbivory and its consequences for New Zealand mistletoes

LAURA A. SESSIONS* AND DAVE KELLY

Plant and Microbial Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand (Email: l.sessions@botn.canterburv.ac.nz)

Ecology, 89(3), 2008, pp. 621-634 © 2008 by the Ecological Society of America

WHAT CAN WE LEARN FROM RESOURCE PULSES?

LOUIE H. YANG, 1,3 JUSTIN L. BASTOW, 1 KENNETH O. SPENCE, 2 AND AMBER N. WRIGHT

¹Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, California 95616 USA
²Department of Entomology, University of California, One Shields Avenue, Davis, California 95616 USA

CSIRO PUBLISHING

www.publish.csiro.au/journals/wr

Wildlife Research,

Optimising bait-station delivery of fertility control agents to brushtail possum populations

Daniel M. Tompkins^{A,C} and David Ramsey^B

urnals/wr

Wildlife Research, 2005, 32, 229-237

The evaluation of indices of animal abundance using spatial simulation of animal trapping

Dave Ramsey A,D, Murray Efford C, Steve Ball B and Graham Nugent B

ALandcare Research, Private Bag 11052, Palmerston North, New Zealand.

BLandcare Research, PO Box 69, Lincoln, New Zealand.

Possum management computer game

Level 1

Level goal: Create area of forest suitable for kiwi sanctuary

Outcome: Positive tree health and a healthy bird population

Action: Reduce possum numbers in the area

Level Epic Win State – All Possums dead inside fenced area, trees at 80% health or more and release of nurtured Kiwi bird

OR

Level Epic Fail State - 100% Possum health, 20% tree health and/or unhatched egg or released Kiwi

Invasive Pests New Zealand

Science

Game

Informed public

Fuchsia pollination restored

Unfenced Sanctuaries

Measuring outcomes, Not just killing things

Predator-Free NZ

Sobering facts and figures:

- NZ land area: 26.9M ha
- Cost of multi-pest control: \$300/ha
- Cost of PFNZ: \$9B

Minimum

What have we learnt?

We can remove multiple pests from large islands
We have a variety of tools in the toolbox for mainland NZ
We can detect and remove pest animals at very low densities
And we know when they re-invade controlled areas
Even small community groups make a difference to biodiversity
Public motivations/concerns can be built into research

Predator-free NZ will cost a lot of money
And is a very long-term goal
BUT
We have a great history of innovation and improvement

