

Possum movements in areas with few possums

Peter Sweetapple, Graham Nugent, Dean Anderson, Roger Pech Landcare Research, Lincoln

Today's talk.....

 Outline why we are interested in possum movements in low density areas.

Review what we already know.

Describe new work in progress.

Traditional reasons for investigating possum movements

- Determine optimum bait/trap spacing during control.
- Calculate effects of reinvasion on population recovery times → repeat control.
- Investigate the consequences for the spread of wildlife diseases (Tb).

Possum movements in uncontrolled populations

- Adults are sedentary
- Home ranges: 1-4 ha:
 - Males 50% larger then female.
 - Larger in low density habitats.
 - Much larger on farmland.
- Sub-adult dispersal:
 - Mainly males; during breeding season.
 - Distances average c. 1-5 km.
 - Independent of density.

Possum movements at control boundaries (the "Vacuum Effect").

Main findings

- Few possums move into controlled areas.
- Some home range displacement toward controlled area.
- Sub-adult dispersal unaffected.

(Green & Coleman 1984, Brockie *et al.* 1991 Cowan & Rhodes 1992, Efford et al. 2000, Pech *et al.* 2010, 2012).

However....

- But rapid reinvasion at Lake McKerrow. (Nugent et al. 2008)
 - → Habitat important?

Kaimanawa possum home range size

Possum home range fidelity within controlled areas

Kapiti Island

- 80% population reduction.
- No adult possum range shifts.
 (Cowan 1993)

Farmland

- 90% population reduction.
- 1 out of 18 survivors shifted.

(Brockie et al. 1997)

Why continue investigating possum movements?

- Managers now frequently operate in very low possum-density environments (<<1% RTC).
- Few previous movement studies from very low, post-control populations.
- "Detect and Mop-up" operations are frequently undertaken for disease surveillance and population control in low density populations.
 - Anecdotal evidence from these operations suggest possums are very mobile.
- Any changes in movement patterns will have consequences for Tb persistence.

Extreme low-density studies Hauhungaroa Range (2005-2008)

- Possums controlled:
 1994, 2000, 2005, 2011
- Abundance in 2005:
 0.05% RTC (0.01/ha).

Survivors Isolated?

 20 of 23 adult females (87%) breeding post control

Re-aggregation of survivors?

Chewcard detection and delayed trapping (Waihaha)

* Delayed trapping = low success (possums have moved?)

Chewcard detection and immediate trapping (Waihaha)

* Quick follow-up trapping = high success

Recapture distances of radio collared possums

Longer distances in controlled populations.

Conclusion:

 Possums more mobile in controlled populations.

Translocated possums Blythe Valley – *very low density*

Average of max range length for 9 of 10 possums = 2.2km

Translocated possums Blythe Valley – *very low density*

One possum moved 12 km within 2 weeks of release

New Possum Movement Study Hauhungaroa, 2012-2014

Interim Conclusions

- Moderate levels of possum control have minimal effect on possum movement patterns.
- Intensive control has minimal effect on movement patterns at control boundaries.
- Survivors of intensive control may become nonsedentary, or greatly expand their ranging behaviour, at least until they re-aggregate. This could have significant consequence for Tb transmission and persistence.

Thanks To:

 The Animal Health Board funded most of the work described.

 Jackie Whitford, Grant Morris, Caroline Thomson, Morgan Coleman, Chris Brausch and many others helps with the fieldwork.

