

Fauna of New Zealand
 Ko te Aitanga Pepeke
 o Aotearoa

INVERTEBRATE SYSTEMATICS ADVISORY GROUP

Representatives of Landcare Research
Dr D. Choquenot
Private Bag 92170, Auckland, New Zealand
Dr T.K. Crosby and Dr R. J. B. Hoare
Private Bag 92170, Auckland, New Zealand
Representative of Universities
Dr R.M. Emberson
Ecology and Entomology Group
Soil, Plant, and Ecological Sciences Division
P.O. Box 84, Lincoln University, New Zealand
\section*{Representative of Museums}
Mr R.L. Palma
Natural Environment Department
Museum of New Zealand Te Papa Tongarewa
P.O. Box 467, Wellington, New Zealand
Representative of Overseas Institutions
Dr M. J. Fletcher
Director of the Collections
NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia

SERIES EDITOR

DrT.K. Crosby
Private Bag 92170, Auckland, New Zealand

Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa

Number / Nama 56

Tyrophagus

(Acari: Astigmata: Acaridae)

Qing-Hai Fan

Institute of Natural Resources, Massey University, Palmerston North, New Zealand, and College of Plant Protection, Fujian Agricultural and Forestry University, Fuzhou 350002, China
fanqh@acarology.org
and
Zhi-Qiang Zhang
Landcare Research, Private Bag 92170, Auckland, New Zealand ZhangZ@LandcareResearch.co.nz

Copyright © Landcare Research New Zealand Ltd 2007

No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher.

Cataloguing in publication

Fan, Qing-Hai.
Tyrophagus (Acari: Astigmata: Acaridae) / Qing-Hai Fan and Zhi-Qiang Zhang. - Lincoln, N.Z. :
Manaaki Whenua Press, Landcare Research, 2007.
(Fauna of New Zealand, ISSN 011-5383 ; no. 56)
ISBN-13: 978-0-478-09386-5
ISBN-10: 0-478-09386-1

1. Tyrophagus - Classification. 2. Tyrophagus - Identification. I. Zhang, Zhi-Qiang, 1963- II. Title. III. Series.

UDC 595.42

Suggested citation:

Fan, Q.-H.; Zhang, Z.-Q. 2007. Tyrophagus (Acari: Astigmata: Acaridae). Fauna of New
Zealand 56, 291 pp .

Prepared for publication by the series editor using computer-based text processing and layout at Landcare Research, Private Bag 92170, Auckland, New Zealand

Māori text by W. Te Rakihawea, Ngaruawahia.
Published by Manaaki Whenua Press, Landcare Research, P.O. Box 40, Lincoln, Canterbury, N.Z. Website: http://www.mwpress.co.nz/

Printed by PrintLink Ltd, Wellington
Date of publication 4 June 2007
Front cover: Tyrophagus communis male (Illustrator: Qing-Hai Fan).

Publication of the Fauna of New Zealand series is the result of a research investment by the Foundation for Research, Science and Technology under contract number C09X0501.

Class Arachnida

Subclass Acari

Supraorder Acariformes

Order Astigmata

 Family Acaridae
Tyrophagus mites

The genus Tyrophagus comprises a group of primarily fungivorous mites, including the mould mites, commonly found in stored food products and decaying organic matter. They are also associates of various insects, or inhabitants of vertebrate nests. They are the most abundant and economically important mites inhabiting stored food and products. Some Tyrophagus species are also facultatively phytophagous and can cause economic damage to plants, including both ornamental flowers and vegetables grown in greenhouses. Tyrophagus belongs to the supraorder Acariformes, order Astigmata, family Acaridae. Currently, it comprises about 35 species and is worldwide in distribution.

The life cycle commonly consists of the egg, larva, protonymph, tritonymph, and adult stages. The deutonymph is rarely present and has been recorded for one species only. Females of Tyrophagus can produce 100 to 700 eggs. Development from the egg to adult normally takes 1 to 3 weeks, depending on temperature.

In New Zealand, members of Tyrophagus was firstly recorded by Cockayne \& Waters (1916) as chaff-mites, and later considered to be Tyrophagus longior by Robertson (1946), who also provided information on its distribution and host. In her revision of Tyrophagus, Robertson (1959) recorded four species from New Zealand. Up to now five species of Tyrophagus have been recognised as occurring in New Zealand.

Illustration / Whakaahua: Tyrophagus communis

Ngā Pūwereriki Tyrophagus

Kei te puninga Tyrophagus ko te rōpū pūwereriki kai harore, ā, ko ngā pūwereriki pūhekaheka hoki ka kitea i ngā kai rokiroki me ngā ngaku pararopi pirau. He pānga o rātou ki ētahi pepeke, ki ngā whai tuaiwi noho kōhanga rānei. Ko rātou ngā pūwereriki tino mātinitini, whai pānga ōhanga ka noho ki ngā kai me ngā hua rokiroki. Ko ētahi momo Tyrophagus hoki he kaitipu taunga ki te noho ki ngā tūāhuatanga taiao ā, arā noa atu te raru ā-ohanga ka puta i a rātou ki te ao tipu, ki ngā putiputi whakapaipai me ngā huawhenua ka whakatupua \bar{a}-whare. Ka noho mai a Tyrophagus ki te pūtoi o runga o Acariformes, o te pūtoi Astigmata, o te whānau Acaridae. I tēnei wā, 35 ōna momo ā, e marara ana ki ngā tōpito katoa o te ao.

Ko tōna mataora \bar{a}, he hua, he kōhungahunga, he pokopoko tuatahi, he pokopoko tuatoru, he pakeke. Me uaua te pokopoko tuarua ka puta ā, kotahi noa iho te momo i mau e pēnei ana. Ka whānau te uwha Tyrophagus i ana hua 100 ki te 700 . Nā runga i te pāmahana, ko tōna 1 ki te 3 wiki te whanaketanga mai i te hua ki te tūātipu pakeke.

I Aotearoa ko te tuhinga tuatahi mō ngāi Tyrophagus nā Cockayne rāua ko Walters (1916) i kīia ai he pūwereriki pāpapa rātou. Nō muri ka tapaina ko Tyrophagus longior e Robertson (1946) à, nāna hoki ngā kōrero ki hea rātou

In this contribution species of the genus Tyrophagus present in New Zealand are comprehensively revised, along with species found in Australia and other Oceanian countries. Ten species, including two new species, are described and illustrated from New Zealand: Tyrophagus communis sp. n., T. curvipenis Fain \& Fauvel, T. longior (Gervais), T. macfarlanei sp. n., T. neiswanderi Johnston \& Bruce, T. putrescentiae(Schrank), T. robertsonae Lynch, T. savasi Lynch, T. similis Volgin and T. vanheurni Oudemans. Seven species, including three new species, are described and illustrated from Australia and Oceanian countries: T. australasiae (Oudemans), T. javensis (Oudemans), T. pacificus sp. n., T. perniciosus Zakhvatkin, T. tropicus Robertson, T. womersleyi sp. n. and T. xenoductus sp. n. In addition to the descriptions of five new species, the following nomenclatural changes are made: Tyrophagus africanus Meyer \& Rodrigues, 1966 syn. n. of Tyrophagus neiswanderi Johnston \& Bruce, 1965; T. palmarum Oudemans sensu Robertson, 1959 syn. n. of T. vanheurni Oudemans (revived). The species concepts of T. putrescentiae (Schrank) and T. javensis (Oudemans) are clarified. Identification keys to adult males and females are given, along with taxonomic references, hosts/habitats and distribution data of each species. This will help identification and facilitate requests for rapid quarantine decisions from trading partners.

Contributor Qing-Hai Fan was born in North China and educated in South China, graduating with a PhD in entomology from Fujian Agricultural University in 1996. From
(continued overleaf)
tītari ai me ō rātou manapou. I tana whakahoutanga o Tyrophagus Robertson (1959) i kōrerohia ngā momo e whā o Aotearoa. I taua wā e rima ngā momo o Tyrophagus e mōhiotia ana ka kitea i Aotearoa.

Ki tēnei tānga kōrero ko ngā momo o te puninga Tyrophagus kei Aotearoa, he mea titiro whānui me ngā momo anō hoki ka kitea i Ahitereiria me ētahi atu whenua o Oceania. Tekau ngā momo, e rua he momo hou, nō Aotearoa katoa, i whakaahuatia $\bar{a}-k u p u, \bar{a}-p i k i t i a:$ Tyrophagus communis sp. n., T. curvipenis Fain \& Fauvel, T. longior (Gervais), T. macfarlanei sp. n., T. neiswanderi Johnstone \& Bruce, T. putrescentiae (Schrank), T. robertsonae Lynch, T. savasi Lynch, T. similis Volgin, T. vanheurni Oudemans. E whitu ngā momo, e toru he momo hou, nō Ahitereiria me ngā whenua Oceania i whakaahuatia ā-kupu, ā-pikitia: T. australasiae (Oudemans), T. javensis (Oudemans), T. pacificus sp. n., T. perniciosus Zakhvatkin, T. tropicus Robertson, T. womersleyi sp. n., me T. xenoductus sp. n. I tua atu i ngā whakaahuatanga o ngā momo hou e rima, ko ngā huringa tapaingoa e whai ake nei: Tyrophagus africanus Meyer \& Rodrigues, 1966 syn. n. o Tyrophagus neiswanderi Johnstone \& Bruce, 1965; T. palmarum Oudemans sensu Robertson, 1959 syn. n. o T. vanheurni Oudemans (i whakahoutia). Kua āta whakamāramatia ngā ariā o te momo T. putrescentiae (Schrank) me te momo T. javensis (Oudemans). Kua homai ngā tohu tautuhi i ngā toa pakeke i ngā uwha pakeke, kua oti ngā tohutoro whakarōpū, ngā nōhanga me ngā raraunga tītaringa mō ia momo. Ka āwhina tēnei i te taha tautuhinga \bar{a}, ko ngā tono a ngā hoa tauhokohoko mō ngā whakatau wehenga ārai mate ka tere te whakautua.

I whānau mai a Qing-Hai Fan i Haina ki te Raki, ka kuraina ki Haina ki te Tonga, me te whiwhi i tana Tākutanga mātai pepeke i te Whare Wānanga Ahuwhenua Fujian i te tau 1996. Mai i te tau 1985 ki te 2001, ka noho ia ki ngā tūranga o te pūkenga āwhina, te pūkenga, me te pūkenga tōrua i taua Whare Wānanga anō. Mai i te tau 2002, he ahorangi mātai pepeke ia i te Whare Wānanga Ahuwhenua, Whakatipu Rākau Fujian. Ko te Tauārai Tipu, te Mātai Pepeke Ahuwhenua, te Mātai Pepeke Noho Tāone me te Mātai Pūwereriki ētahi o ngā kaupapa kua whakaakona e ia. I te tau 2001 me te 2002 , i a ia e toro ana i te Whare Wānanga o Queensland i Ahitereiria, ka mahi tahi rāua ko Tākuta David E. Walter ki te tirotiro i ngā pūwereriki o Ahitereiria. I te tau 2003 ka rere mai ki Aotearoa, ka rangahau i ngā pūwereriki 'pātaka porotaka' i te taha o Tākuta Zhi-Qiang Zhang, i raro i te maru o Manaaki Whenua. Kātahi ia ka mahi hei kairangahau i Te Kunenga ki Pūrehuroa, he āta tirotiro tāna i te pūwereriki Varroa e
(haere tonu)

1985 to 2001 he served as an assistant lecturer, lecturer, and associate professor in Fujian Agricultural University. He has been a professor of entomology at Fujian Agricultural and Forestry University since 2002. He has taught courses including Plant Quarantine, Agricultural Entomology, Urban Entomology, and Acarology. From 2001 to 2002, as a visiting scientist in Queensland University, Australia, he worked on Australian mites with Dr David E. Walter. He came to New Zealand in 2003 to study bulb mites with Dr Zhi-Qiang Zhang as an acarologist in Landcare Research, and then worked on the devastating honeybee pest, Varroa mite, as a research associate at Massey University. He is the Production Editor of Systematic \& Applied Acarology. He has written more than 60 journal papers on the systematics, biology, and control of mites and insects. He published a book on the Australasia and Oceania bulb mites, and a monograph on Raphignathoidea in the Fauna of New Zealand series in collaboration with Dr Zhang. His main interests are the systematics of mites (especially the superfamilies Raphignathoidea, Tetranychoidea, and Acaroidea) and pest management.

Contributor Zhi-Qiang Zhang was born in Shanghai, China and educated at Fudan University (Shanghai), graduating in 1985 with a BSc in Zoology. He began his studies
patupatu ana i ngā pī-miere. Ko ia te ǵtita Waihanga o Systematic and Applied Acarology. He nui ake i te 50 ngā tuhinga hautaka kua oti i a ia e pā ana ki ngā whakapapa, te koiora, me te here i ngā pūwereriki me ētahi atu pepeke. Kua whakaputaina e rāua ko Tākuta Zhi-Qiang Zhang tētahi pukapuka e \bar{p} ā ana ki ngā \bar{p} w̄wereriki pātaka porotaka o Ahitereiria me Te Moana-nui-a-Kiwa. Ko ngā kaupapa e ngākau nuitia ana e ia, ko ngā whakapapa pūwereriki (me tino kōrero i konei ko ērā o ngā whā nau nui Raphignathoidea, Tetranychoidea, me Acaroidea), me te here i ngā rauropi kino.

I whānau mai a Zhi-Qiang Zhang i Shanghai, i Haina, ka whai i te mātauranga i te Whare Wānanga Fudan (Shanghai). Nō te tau 1985 ka whiwhi ia i tana Tohu Paetahi, ko te Mātauranga Kararehe te kaupapa. Ka tīmata tana rangahau i ngā whakapapa me te koiora pūwereriki i te Kura Paerua, ite Whare Wānanga Fudan, ite tau 1985, à, ka haere tonu ana akoranga paerua mai ite 1988 ki te 1992 ite Whare Wānanga o Cornell, i Ithaca, Te Āporo Nui. I reira ka riro i a ia tana Tākutatanga mātai pepeke, ko te kaupapa whāiti, ko te taupuhi kaiao o ngā pūwereriki konihi me ngā hanga ka kainga e rātou. Mai i te tau 1992 ki te 1994, ka mahi ia hei kaimātai pepeke taupuhi kaiao i te Whare Wānanga o Oregon, i Corvallis, Oregon, i runga i tētahi kaupapa here ā-koiora i te tarutaru, he mea whakataki nā Tākuta Peter McEvoy. Mai i te tau 1994 ki te 1999, he kaimātai pūwereriki ia mā te CAB Pūtahi Mātai Pepeke o te Ao, ite Whare Pupuri Taonga o te Ao Tūroa, i Rānana. I a ia e mahi ana mā CAB International, ko ia anō te Āpiha Hangarau o te BioNET-INTERNATIONAL mai i te 1998 ki te 1999. I te tau 1999, ka neke ia ki Aotearoa, ā, mai i tērā wā, ko ia te kaimātai pūwereriki o Manaaki Whenua, e whakapau kaha ana ki ngā whakapapa me te koiora pūwereriki.

He paewai rangahau hōnore a Tākuta Zhang i te Whare Pupuri Taonga o te Ao Tūroa, he ahorangi turuki ia ite Whare Wānanga Fudan, he ahorangi hōnore anō ia i te Kura Tiketike Fujian mō ngā Mātauranga Ahuwhenua (Fujian, China). Inā kēte maha o ngā tuhinga aronga whāiti kua puta i a ia e pā ana ki te pūwereriki, he neke atu i te 100 ana tuhinga, he mea arotake e tētahi atu, e pā ana ki ngā whakapapa, te taupuhi kaiao me te here i ngā hanga kino o te ao angawaho. Ko ia te ētita, me tètahi o ngā mema o ngā poari ētita o te maha atu o ngā hautaka o te ao e aro whāiti ana ki te mātai pūwereriki, te mātai pepeke, me te mātauranga kararehe. Ko ia anō te Perehitene o te Systematic \& Applied Acarology Society, à, kei runga ia i te Komiti Whāiti o te Whakarauikatanga Mātai Pūwereriki o te Ao.
on mite systematics and biology at the Graduate School, Fudan University, in 1985, and then continued his postgraduate studies between 1988 and 1992 at Cornell University, Ithaca, New York, where he received his PhD in entomology for research on mite predator-prey ecology. Between 1992 and 1994 he worked as a postdoctoral insect ecologist at Oregon State University, Corvallis, Oregon, on biological weed control. From 1994 to 1999 he was the acarologist with CAB International Institute of Entomology based in the Natural History Museum in London. While employed at CAB International he also served as a Technical Officer of the BioNET-INTERNATIONAL from 1998 to 1999. In 1999, he moved to New Zealand and has since been the acarologist for Landcare Research, working on mite systematics and biology in the New Zealand Arthropod Collection. Dr Zhang holds an honorary research fellowship at the Natural History Museum, an adjunct professorship at Fudan University and Hebei Normal University (Shijiazhuang, China), and an honorary professorship at Fujian Academy of Agricultural Sciences (Fujian, China). He has published several monographs on mites and more than 150 refereed papers on arthropod systematics, ecology, and pest management. He is the editor and an editorial board member of several international journals of acarology, entomology, and zoology. He is the President of the Systematic \& Applied Acarology Society and is also on the Executive Committee of the International Congress of Acarology. In August 2006 he was elected to the International Commission on Zoological Nomenclature as a commissioner.

Abstract

Tyrophagus (Acari: Acaridae) are primarily fungivorous mites commonly found in stored food products and decaying organic matter. They are also associates of various insects, or inhabitants of vertebrate nests. They are the most abundant and economically important mites inhabiting stored food and products. Some Tyrophagus species are also facultatively phytophagous and can cause economic damage to plants, including both ornamental flowers and vegetables grown in greenhouses.

In this contribution, Tyrophagus mites of New Zealand are comprehensively revised, along with species found in Australia and other Oceanian countries. This will assist identification and facilitate requests for rapid quarantine decisions from trading partners. Ten species, including two new species, are described and illustrated from New Zealand: Tyrophagus communis sp. n., T. curvipenis Fain \& Fauvel, T. longior (Gervais), T. macfarlanei sp. n., T. neiswanderi Johnston \& Bruce, T. putrescentiae (Schrank), T. robertsonae Lynch, T. savasi Lynch, T. similis Volgin, and T. vanheurni Oudemans. Seven species, including three new species, are described and illustrated from Australia and Oceanian countries: T. australasiae (Oudemans), T. javensis (Oudemans), T. pacificus sp. n., T. perniciosus Zakhvatkin, T. tropicus Robertson, T. womersleyi sp. n., and T. xenoductus sp. n. Identification keys to adult females and males are given, along with taxonomic references, hosts/ habitats and distribution data of each species.

In addition to the descriptions of five new species, the following nomenclatural changes are made: Tyrophagus africanus Meyer \& Rodrigues, 1966 syn. n. of Tyrophagus neiswanderi Johnston \& Bruce, 1965; T. palmarum Oudemans sensu Robertson, 1959 syn. n. of T. vanheurni Oudemans (revived). The species concepts of T. putrescentiae (Schrank) and T. javensis (Oudemans) are clarified.

Keywords: Acari, Astigmata, Acaridae, taxonomy, keys, New Zealand, Australia, Oceanian countries, quarantine.

Fan, Qing-Hai; Zhang, Zhi-Qiang 2007. Tyrophagus (Acari: Astigmata: Acaridae). Fauna of New Zealand 56, 291 pp.

Received: 30 November 2005. Accepted: 10 March 2006.

CHECKLIST OF TAXA

Genus Tyrophagus 13
Species in New Zealand 18
Tyrophagus communis $\mathrm{sp} . \mathrm{n}$. 18
Tyrophagus curvipenis Fain \& Fauvel 22
Tyrophagus longior (Gervais) 24
Tyrophagus macfarlanei $\mathrm{sp} . \mathrm{n}$. 26
Tyrophagus neiswanderi Johnston \& Bruce 27
Tyrophagus putrescentiae (Schrank) 30
Tyrophagus robertsonae Lynch 32
Tyrophagus savasi Lynch 34
Tyrophagus similis Volgin 36
Tyrophagus vanheurni Oudemans 38
Australasian and Oceanian species NOT PRESENTin New Zealand40
Tyrophagus australasiae (Oudemans) 40
Tyrophagus javensis (Oudemans) 42
Tyrophagus pacificus sp. n. 44
Tyrophagus perniciosus Zakhvatkin 46
Tyrophagus tropicus Robertson 48
Tyrophagus womersleyi sp . n 50
Tyrophagus xenoductus $\mathrm{sp} . \mathrm{n}$. 51

CONTENTS

Checklist of taxa 9
Acknowledgements 10
Introduction 10
Economic importance 11
Methods and conventions 11
Descriptions 13
References 54
Appendices 57
Illustrations 69
Plates 242
Distribution maps 277
Taxonomic index 278
Habitat, host, and country indexes 280

ACKNOWLEDGEMENTS

This project could not have been completed without the help and assistance of many colleagues.

We thank the following colleagues/organisations for the loan of specimens for study:
Dr Henri M. Andre (Musée royal de l'Afrique Centrale, Tervuren, Belgium),
Dr Anne Baker (Natural History Museum, London, U.K.),

Dr Alex Fain (Institut royal des Sciences naturelles de Belgique, Belgium),
Mrs Olwyn Green and Mr Alan Flynn (National Plant Pest Reference Laboratory, Ministry of Agriculture and Forestry in Lincoln and Auckland, New Zealand),
Dr Bruce Halliday (Australian National Insect Collection, CSIRO, Canberra, Australia),
Dr David Hirst (South Australian Museum, Adelaide, Australia),
Dr John T. Jennings (Waite Insect \& Nematode Collection, University of Adelaide, Adelaide, Australia),
Dr Hans Klompen (Ohio State University Museum, Columbus, Ohio, U.S.A.),
Dr Peter Lillywhite (Museum of Victoria, Melbourne, Australia),
Dr Erik J. van Nieukerken (Nationaal Natuurhistorisch Museum (Naturalis), Leiden, Netherlands),
Mr Luke Halling (Australian Quarantine and Inspection Service, New South Wale, Australia),
Mr Bill Crowe (Australian Quarantine and Inspection Service, Queensland, Australia),
Dr Ronald Ochoa (National Museum of Natural History, Smithsonian Institution, Washington, D.C., U.S.A.),

Dr Peter J. Schwendinger (Muséum d'Histoire Naturelle de Genève, Geneva, Switzerland),
Dr Eddie A. Ueckermann (Plant Protection Research Institute, South Africa),
Mr John Clark (CPIT, Faculty of Health and Sciences, Christchurch, New Zealand),
We thank Rosa Henderson, Trevor Crosby, Peter Buchanan, and Anne Austin (Landcare Research, New Zealand) for reading an earlier version of this manuscript. We are especially grateful to Bruce Halliday (CSIRO, Canberra, Australia), Nicholas Martin (Crop \& Food Research, Auckland, New Zealand), and Don Griffiths (UK) for reviews and criticisms of the manuscript.

We are deeply indebted to Dr Qiao Wang (Massey University) for continuing collaboration and support of our research and especially personal support to the senior author.

Major funding for this research was received from Ministry of Agriculture and Forestry, New Zealand under MAF Science Policy, Project FMA122. This project was also funded in part by a contract (CO9X0501) from the Foundation for Research, Science and Technology, New Zealand.

INTRODUCTION

The genus Tyrophagus Oudemans belongs to the family Acaridae of the suborder Astigmata. Most species are fungivorous and occur commonly in stored food products and decaying organic matter. Some species are also facultatively phytophagous. Many other species are associates of various insects, or inhabitants of vertebrate nests.

The Acaridae is a large family of worldwide distribution. About 400 species of acarid mites belonging to some 90 genera are known in the world and many others are yet to be discovered, especially in tropical areas.

Tyrophagus is one of the most important members of the Acaridae. They are the most abundant and economically important mites inhabiting stored food and products (Hughes 1976). Some Tyrophagus species can cause economic damage to plants, including both ornamental flowers and vegetables grown in greenhouses (Zhang 2003). Tyrophagus neiswanderi was found feeding on foliage of greenhouse cucumbers (Johnston \& Bruce 1965, Nakao \& Kurosa 1988). Tyrophagus perniciosus and T. similis were observed attacking spinach, melon, cucumber, pumpkin, and maize in the field (Nakao \& Kurosa 1988).

Since the erection of the genus Tyrophagus by Oudemans (1924a), nearly 60 names have been proposed under the genus Tyrophagus. Most of them are treated as synonyms (Griffiths 1979). The number of valid names at present is 35 . Zakhvatkin (1941) first revised the genus.

Two other major subsequent revisions were carried out by Robertson (1959) and Samšiòák (1962). It was Griffiths (1979) who first introduced the concept of trying to understand the relationship between the phenotype and the genotype and undertook hybridisation experiments to determine the limits of morphospecies. Other important taxonomic contributions were made by Johnson \& Bruce (1965), Fain (1976, 1977, 1985), and Lynch (1989). The genus is in serious need of an updated revision to allow clarification of species limits and accurate identification.

In New Zealand, tyrophagid mites have long been considered serious household pests. Cockayne \& Waters (1916) first recorded Tyrophagus longior (as Tyroglyphus longior) attacking fodder. Robertson (1946) historically reviewed the studies on Tyrophagus longior and provided distribution and host information. In 1959 she recorded 4 species from New Zealand: Tyrophagus communis (as T. putrescentiae), T. longior, T. similis (as T. oudemansi), and T. vanheurni (as T. palmarum), in her comprehensive revision of the genus. Up to now 5 species (including T. neiswanderi) were known to occur in New Zealand.

Economic importance and context for this volume

Unidentified mites in this genus can pose problems for access to markets for horticultural crops and stored foodstuffs when intercepted by an importing country; however, there is no comprehensive account of this genus for New Zealand and Australia. This monograph revises the taxonomy of Tyrophagus in New Zealand, Australia, and other Oceanian countries including Cook Is., Fiji, Niue Is., Papua New Guinea, Samoa, Solomon Is., Tokelau Is., Tonga, Tuvalu, and Vanuatu.

We provide user-friendly identification keys to species using morphological characters of the adults, both males and females, with additional worldwide distribution data for each species. The key and distribution information can be used by MAF to facilitate rapid quarantine decisions by trading partners.

Life cycle

The life cycle consists of the egg, larva, protonymph, deutonymph, tritonymph, and adult stages. The deutonymph, usually known as the hypopus, is rarely present, being dependent on environmental and biotic conditions, and has been recorded for one species only. Development from the egg to adult normally takes $1-3$ weeks, depending on temperature. Many acarid mites are very highly fecund, for example, Tyrophagus females can produce between 100 and 700 eggs.

METHODS AND CONVENTIONS

Methods

All measurements were made from slide-mounted specimens using stage-calibrated ocular micrometers on an in-terference-phase contrast microscope. Chelicerae were measured from the basal articulations to the tips of movable digits. Idiosomal lengths were measured from the anterior margins to the posterior margins. Idiosomal widths were measured at the maximum width of the idiosoma between leg II and III. Dorsal body setae were measured from the alveoli to tips. Legs were measured from the bases of trochanters to the tips of claws. Femora of legs were measured from the ventral junction between the trochanter and femur to the junction between the femur and genu. Genua were measured from the junction between the femur and genu to the junction between the genu and tibia. Tibiae were measured from the junction between the genu and tibia to the junction between the tibia and tarsus. Tarsi were measured from the basal margins to the tips of claws. Setae, spines, and solenidia on legs were measured from the alveoli to tips. All measurements are given in micrometers; for convenience, the symbol $\mu \mathrm{m}$ is omitted throughout the descriptions. Line drawings were made in pencil using a camera lucida attachment on a microscope and inked with Rotring Rapidograph Pens. Images were taken using a Leica microscope and edited with the Automontage program if necessary.

In the material examined, n / n indicates number of slides/ number of specimens. Measurements $x(y-z): x$ is the measurement of the specimens (most are holotype or neotype) from which the figure was drawn; $y-z$ is the range of measurements. Female or male means the adult of each sex.

The terminology of idiosomal chaetotaxy follows Griffiths et al. (1990) and the terminology of palp and leg chaetotaxy follows that of Grandjean (1939) and Griffiths (1970). The terminology of the copulatory organ follows that of Klimov \& O’Connor (2003) and Fan \& Zhang (2004).

Conventions

Depositories and collection acronyms
ANIC Australian National Insect Collection, CSIRO, Canberra, Australia
AQIS/NSW Australian Quarantine and Inspection Service, New South Wales, Australia
AQIS/QLD Australian Quarantine and Inspection Service, Queensland, Australia
ARC-PPRI ARC-Plant Protection Research Institute, Pretoria, South Africa

ASCU Agricultural Scientific Collections Unit, Orange Agricultural Institute, NSW Agriculture, Orange NSW, Australia
BMNH Natural History Museum, London, U.K.
IRScNB Institut royal des Sciences naturelles de Belgique, Brussels, Belgium
MAF/A Ministry of Agriculture and Forestry, Auckland, New Zealand
MAF/L Ministry of Agriculture and Forestry, Lincoln, New Zealand
MRAC Musée royal de l'Afrique Centrale, Tervuren, Belgium
MV Museum of Victoria, Melbourne, Australia
NPPRL National Plant Pest Laboratory, Ministry of Agriculture and Forestry of New Zealand
NZAC New Zealand Arthropod Collection, Landcare Research, Auckland, New Zealand
OSM Ohio State University Museum, Columbus, Ohio, U.S.A.

RMNH Nationaal Natuurhistorische Museum (Naturalis) [formerly Rijksmuseum van Natuurlijke Historie], Leiden, Netherlands
SAM South Australian Museum, Adelaide, Australia
USNM National Museum of Natural History, Smithsonian Institution, Washington, D.C., U.S.A.
WINC Waite Insect \& Nematode Collection, University of Adelaide, Adelaide, Austalia
Under material examined, the New Zealand collection data is categorised under the area codes of Crosby et al. (1998), and Australian collection data is arranged under State abbreviations, such as WA for Western Australia; these are arranged alphabetically.

List of abbreviations

coxal-sternal setae associated with bases of legs I innermost (first) pair of coxal-sternal setae associated with bases of legs III
second pair of coxal-sternal setae associated with bases of legs III
4a coxal-sternal setae associated with bases of legs IV
aa proximal seta on tarsi I
$\mathrm{ad}_{1} \quad$ first pair of adanal setae
$\mathrm{ad}_{2} \quad$ second pair of adanal setae
ad_{3} third pair of adanal setae
ba mid-dorsal seta on tarsi I and II
$c_{1} \quad$ innermost (first) pair of setae in first series or row on hysterosoma
c_{2} second pair of setae in first series or row on hysterosoma
c_{3} fourth pair of setae in first series or row on hysterosoma
cG anteriorly-located seta on genua I and II
cha cheliceral seta
c_{p} third pair of setae in first series or row on hysterosoma
d subdistal dorsal seta on tarsi
$d_{1} \quad$ innermost (first) pair of setae in second series or row on hysterosoma
$d_{2} \quad$ second pair of setae in second series or row on hysterosoma
e subdistal dorsal conical spine or seta on tarsi
$e_{1} \quad$ innermost (first) pair of setae in third series or row on hysterosoma
$e_{2} \quad$ second pair of setae in third series or row on hysterosoma
elcp supracoxal seta of palp
f subdistal lateral seta on tarsi
$\mathrm{f}_{2} \quad$ setae in fourth series or row on hysterosoma
g genital setae
gla opisthonotal glands
gT anteriorly-located seta on tibiae I and II
$h_{1} \quad$ innermost (first) pair of setae in fifth series or row on hysterosoma
$h_{2} \quad$ second pair of setae in fifth series or row on hysterosoma
$h_{3} \quad$ third pair of setae in fifth series or row on hysterosoma
hT posterior-located seta on tibiae I and II
ia anterior pair of cupules (lyrifissures) on dorsal hysterosoma
caudal pair of cupules (lyrifissures) on hysterosoma
im middle pair of cupules (lyrifissures) on dorsal hysterosoma
ip posterior pair of cupules (lyrifissures) on dorsal hysterosoma
kT ventral seta on tibiae III and IV
la anteriorly-located mid-lateral seta on tarsi I and II
m subcapitular setae
mG
nG
pR
ps ${ }_{1}$
ps_{2}
ps_{3} third pair of pseudanal setae
ve external pair of vertical setae
vF ventral seta on femora I and II
vi internal pair of vertical setae
w mid-ventral seta on tarsi III and IV
wa mid-ventral seta on tarsi I and II
wF ventral seta on femur IV
$\varepsilon \quad$ famulus at base of solenidion $\left(\omega_{1}\right)$ on tarsus I
$\varphi \quad$ solenidion on tibia
$\sigma \quad$ solenidion on genua II and III
$\sigma \quad$ anteriorly-located solenidion on genu I
σ " posterior-located solenidion on genu I
ω proximal solenidion on tarsi II
$\omega_{1} \quad$ proximal solenidion on tarsi I
ω_{2} basal solenidion on tarsus I
ω_{3} distal solenidion on tarsus I

DESCRIPTIONS

Genus Tyrophagus Oudemans

Tyrophagus Oudemans, 1924a: 250.
Coelognathus Turk, 1953: 81.
Type species: Acarus putrescentiae Schrank, 1781; designated by Oudemans, 1924.

Diagnosis. Adult. Idiosoma saccate, 300-600 long, whitish to semitransparent. Dorsum with 4 pairs of prodorsal setae and 12 pairs of hysterosomal setae, all dorsal setae barbed. External vertical setae obviously long, situated at anterior lateral margins of prodorsal shield. Internal scapular setae longer than external scapular setae. Hysterosomal setae c_{1} and d_{1} or d_{2} shorter than distance to setae in next row. Supracoxal setae scx usually bearing pectinations, rarely smooth. Distal part of Grandjean's organ fingerlike, rarely barbed.

Legs light brown. Tarsi I-IV slender, more than twice as long as wide. Dorsal distal spine e on tarsi I-II slender. Proral setae on tarsi I-II thin, longer than unguinal setae. Tarsus I with 2 long distal setae and 1 distal solenidion $\left(\omega_{3}\right)$, tarsi II-III each with 2 long distal setae, tarsus IV with 2 long distal setae in female and 1 long distal seta in male.

Description. Adult female (Fig. 1-5). Gnathosoma (Fig. 3). Chelicerae chelate, having a small ventral seta (cha) at base of distal digits; cha distally pointed or bifurcate. Basal part of palp fused to infracapitulum, bearing a lateral spine-like palpal supracoxal seta (elcp); elcp smooth or barbed. Distal part of palp having 2 segments, basal segment bearing 2 simple setae; the other segment bearing 1 simple seta, 1 solenidion and 1 button-like ventral eupathidium. Infracapitulum with a pair of whip-like ventral setae (m).
Idiosoma (Fig. 1-2). Prodorsum with a shield, 4 pairs of prodorsal setae ($v i, v e, s c i$, and $s c e$), and 1 pair of lateral sclerites. Prodorsal shield punctate, and its posterior margin straight, or broadly round or convex. Internal vertical setae ($v i$) situated at anterior margin of prodorsal shield, moderately barbed and close to each other. External vertical setae (ve) more than $1 / 2$ of $v i$, obviously barbed, situated at anterior lateral margins of prodorsal shield, about in same alignment with vi. Scapular setae (sci and sce) situated behind prodorsal shield, moderately barbed; internal scapular setae (sci) obviously longer than external scapular setae (sce). Basal part of lateral sclerite with a narrow supracoxal gland opening and distal part with a finger-like Grandjean's organ. Supracoxal setae (scx) often with pectinations, rarely smooth, lateral to base of sclerite. Hysterosoma with 12 pairs of barbed setae (c_{1}, $c_{2}, c_{p}, c_{3}, d_{1}, d_{2}, e_{1}, e_{2}, f_{2}, h_{1}, h_{2}$, and $\left.h_{3}\right), 4$ pairs of lyrifíssures (ia, im, ip, and ih) and 1 pair of opisthonotal glands; setae c_{1} and c_{3} obviously short, c_{3} situated ventrolaterally; d_{2} often about as long as c_{1}, rarely twice as long as $c_{1} ; d_{1}$ often obviously longer than c_{1}, c_{3}, and d_{2}, rarely as long as $c_{1} ; e_{2}$ and f_{2} situated dorsolaterally or ventrolaterally; h_{2} situated posteriorly and h_{3} situated ventroposteriorly. Lyrifissures ia situated posteriorad of c_{2}; im close to d_{2}, dorsolaterally or ventrolaterally; ip close to f_{2}; ih in ventral side, lateral to anal opening. Gland opening (gla) posteriorad of d_{2}. Coxae fused with ventral idiosoma, each bounded by a sclerotised apodeme. Left and right apodemes of coxae I fused together along midline. A pair of thin sclerotised sejugal apodemes present between coxae II and coxae III. Coxa I with 1 seta (1a), coxa III with 2 setae ($3 a$ and $3 b$), and coxa IV with 1 seta (4a). Genital opening present between coxae III and IV, with 2 pairs of genital papillae covered by genital valves and 1 pair of genital setae (g). Genital folds present. Anal opening posteriorad of genital opening, with 6 pairs of setae $\left(a d_{3} p s_{3}, a d_{2}, a d_{1}, p s_{2}\right.$, and $\left.p s_{1}\right), p s_{3}$ often slightly longer than or about as long as $a d_{1-3}, p s_{2}$ and $p s_{1}$ obviously longer than $a d_{1-3}$ and $p s_{1}$. Copulatory opening posterior to anal opening, supported by a small selerotised pad that varies in shape, and leads into a spermathecal duct of various lengths and dimensions. The duct opens
into the sac-like inner part of the spermatheca. The sac being attached to and supported by a collar of chitinised material and bearing paired Y -shaped, funnel-like sclerites, usually sited at the opposite points of a circumference and to which the paired ovarial sacs are attached. Each funnel terminates in a very fine tube through which spermatozoa can travel from the reservoir of the spermathecal sac into the ovary proper (Fig. 3).
Legs (Fig. 5). Light brown. Tarsi I-IV slender, more than twice as long as wide. Dorsal distal seta e on tarsi I-II thin, setiform. Proral setae on tarsi I-II thin, longer than unguinal setae. Tarsus I with 2 long distal setae and 1 distal solenidion $\left(\omega_{3}\right)$, tarsi II-IV each with 2 long distal setae. Setae on trochanters, femora, and tarsi smooth; setae on genua and tibiae barbed. Chaetotaxy of legs (IIV): coxae $1,0,2,1$; trochanters $1,1,1,0$; femora $1,1,0$, 1 ; genua $2+2 \sigma, 2+1 \sigma, 1+1 \sigma, 0$; tibiae $2+1 \varphi, 2+1 \varphi, 1$ $+1 \varphi, 1+1 \varphi$; tarsi $7+1$ dorsal setiform spine +5 ventral conical or setiform spines $+3 \omega+1 \varepsilon, 6+1$ dorsal setiform spine +5 ventral conical or setiform spines $+1 \omega, 4+1$ dorsal setiform spine +5 ventral conical or setiform spines, $4+1$ dorsal setiform spine +5 ventral conical or setiform spines.
Adult male (Fig. 6-10). Similar to adult female except: genital opening situated between coxae IV; aedeagus present; with a pair of anal suckers; without adanal setae; tarsus IV having 2 suckers. Complement of setae on legs as in adult female except tarsi IV with $3+1$ dorsal setiform spine +5 ventral conical or setiform spines.
Tritonymph (Fig. 11-14). Similar to adult female except: genital folds absent; adanal setae absent. Complement of setae on legs as in adult female.
Deutonymph. This stage is often suppressed except in one species, Tyrophagus formicetorum Volgin (Fain \& Chmielewski 1987). Body highly sclerotised, dorsoventrally flat. Gnathosoma reduced. Chelicerae absent. Idiosomal setae small. Setae $s c x$ situated ventrally. With 2 pairs of genital papillae and 1 pair of genital setae. Ventral hysterosomal area forming an anal attachment organ, which bears 6 pairs of attachment structures (modified setae). Solenidion σ " on genu I absent. Solenidion ω_{3} on tarsi I proximal. Some of the distal setae on tarsi foliate. Complement of setae on legs as in adult female except tarsi IIV with $9+3 \omega+1 \varepsilon(?), 9+1 \omega(?), 8,8$.
Protonymph (Fig. 15-18). Similar to adult female except: ventral setae $3 a$ and $4 a$ absent; genital folds absent; with 1 pair of genital papillae; adanal setae absent; solenidion ω_{3} on tarsi I absent; trochanter IV to tibia IV nude. Chaetotaxy of legs (I-IV): coxae $1,0,1,0$; trochanters $0,0,0,0$; femora $1,1,0,0$; genua $2+2 \sigma, 2+1 \sigma, 1+1 \sigma, 0$; tibiae $2+1 \varphi, 2+1 \varphi, 1+1 \varphi, 0$; tarsi $7+1$ dorsal setiform spine +5 ventral conical or setiform spines $+2 \omega+1 \varepsilon, 6$
+1 dorsal setiform spine +5 ventral conical or setiform spines $+1 \omega, 4+1$ dorsal setiform spine +5 ventral conical or setiform spines, $3+1$ dorsal setiform spine +5 ventral conical or setiform spines.
Larva (Fig. 19-22). Similar to adult female except: hysterosoma with 10 pairs of setae (f_{2} and h_{3} absent); ventral setae $3 a$ and $4 a$ absent; without genital opening, genital setae and genital papillae; pseudanal and adanal setae absent; with 3 pairs of legs (leg IV absent); with 1 pair of Claparède organs between coxae I-II; solenidia ω_{2} and ω_{3} on tarsi I absent. Chaetotaxy of legs (I-III): coxae $0,0,0$; trochanters $0,0,0$; femora $1,1,0$; genua $2+2 \sigma, 2$ $+1 \sigma, 1+1 \sigma$; tibiae $2+1 \varphi, 2+1 \varphi, 1+1 \varphi$; tarsi $7+1$ dorsal setiform spine +5 ventral conical or setiform spines $+1 \omega+1 \varepsilon, 6+1$ dorsal setiform spine +5 ventral conical or setiform spines $+1 \omega, 4+1$ dorsal setiform spine +5 ventral conical or setiform spines.

Key to stages of Tyrophagus Oudemans

1 With 4 pairs of legs; hysterosoma with 12 pairs of setae (f_{2} and h_{3} present) (Fig. 1); Claparède organs absent; genital papillae present (1 or 2 pairs) (Fig. 2) \qquad
-With 3 pairs of legs; hysterosoma with 10 pairs of setae (f_{2} and h_{3} absent); Claparède organs present, located between coxae I-II (Fig. 20); genital papillae absent (Fig. 20) larva
2 Body saccate; gnathosoma developed, chelicerae chelate (Fig. 3A); ventral hysterosoma without an anal attachment organ; genu I with 2 solenidia (Fig. 5A) 3
-Body highly sclerotised, dorsoventrally flat; gnathosoma reduced, chelicerae absent; ventral hysterosoma with an anal attachment organ; genu I with only 1 solenidion deutonymph
3 With 2 pairs of genital papillae (Fig. 2); ventral setae $3 a$ and $4 a$ present; solenidion ω_{3} on tarsus I present (Fig. 5A); femur IV and tibia IV not nude 4
-With 1 pair of genital papillae (Fig. 16); ventral setae $3 a$ and $4 a$ absent; solenidion ω_{3} on tarsus I absent (Fig. 18A); femur IV and tibia IV nude
protonymph
4 Genital folds present; with either spermatheca (Fig. 2) or aedeagus (Fig. 7) . (adult) 5
-Genital folds absent; without spermatheca or aedeagus (Fig. 12) \qquad tritonymph

5 With aedeagus (Fig. 7); without spermatheca; hysterosoma with a pair of anal suckers (Fig. 7); without adanal setae; tarsus IV with 2 suckers (Fig. 10D) adult male
-Without aedeagus but with spermatheca (Fig. 2); without anal suckers; with 3 pairs of adanal setae; tarsus IV without suckers (Fig. 5D)
adult female

Key to adult females of Tyrophagus of Australasia and

Oceania (including known world distributions)
1 Hysterosomal setae d_{2} long, 1.6-1.9× length of c_{1} (Fig. 149); setae elcp slender (Fig. 45B, 151B)2
-Hysterosomal setae d_{2} short, as long as or slightly longer than c_{1} (Fig. 1); setae elcp stout (Fig. 3B) 3
2 Adanal setae $a d_{l}$ more than $2 \times$ length of pseudanal setae $p s_{3}$ (Fig. 151G); spermathecal duct long and thin, expanding slightly in last quarter of its length, not forming a cylindrical tube (Fig. 152D); Africa, China, Germany, India, Malaysia, Nigeria, Samoa, West Africa
(p. 48)...T. tropicus Robertson, 1959
—Adanal setae $a d_{l}$ as long as pseudanal setae $p s_{3}$ (Fig. 46B); spermathecal duct narrowing suddenly so that final quarter of its length forms a narrow cylindrical tube before entering the sac (Fig. 45G); New Zealand. (p. 26)... T. macfarlanei sp. n.
3 Reproductive apparatus very small, spermathecal duct slender and short (Fig. 70G-H, 122B-D), base of spermathecal sac just larger than circumference of spermathecal duct (Figs. 122B-D, Plates 11C, 12C)
-Reproductive apparatus considerable, spermathecal duct moderate or large (Fig. 3H-I), base of spermathecal sac medium length or longer, transversally expanded, obviously larger than spermathecal duct (Fig. 4C, Plate 10A)

5
4 Seta r of tarsus IV spiniform (Fig. 123D); anterolateral corners of prodorsal shield without pigmented areas - the 'eyespots' (Fig. 121F); Australia, Ecuador, Indonesia, Panama, Philippines, Singapore, Thailand (p. 42)...T. javensis (Oudemans, 1916)
—Seta r of tarsus IV setiform (Fig. 72D); prodorsal shield bearing a pair of faint eyespots (Fig. 70C); New Zealand, Thailand, U.S.A
(p. 32)...T. robertsonae Lynch, 1989

5 Prodorsal shield bearing a pair of eyespots (Fig. 3F, Plate 1A)

6
—Prodorsal shield without pigmented eyespots (Fig. 35D, Plate 3A)

6 Base of spermathecal sac small, forming a pair of triangular, sclerotised structures (Fig. 166G Plate 13D); tarsus I ω_{1} and tarsus II ω long slender tube for its entire length, terminating into a distinctly pointed tip (Fig. 167CD); Tonga
(p. 51)...T. xenoductus sp. n.
-Base of spermathecal sac considerable, varying in shape from flatly banded (Fig. 3H-I, Plate 11B) to funnelshaped (Fig. 50F-G, Plate 11A); tarsus I ω_{1} and tarsus II ω terminating into a round tip (Fig. 4D-E) 7
7 Adanal setae $a d_{1} 1.2-1.3 \times$ longer than $a d_{2}$ (Fig. 132B); Cook Is, Fiji, Niue, Samoa, Tonga
(p. 44)...T. pacificus sp. n.
-Adanal setae $a d_{l}$ shorter than or about as long as $a d_{2}$ (Fig. 4C)

8
8 Base of spermathecal sac funnel-shaped, spermathecal duct without a neck at its distal half (Fig. 50F-G, 80E, Plate 11D) 9
-Base of spermathecal sac flat, spermathecal duct with a neck at its distal half (Fig. 3H-I, Plate 10A) 10
9 Seta d_{l} long, $2.4(2.2-2.5) \times$ length of c_{l} and 2.8 (2.7$2.9) \times$ length of d_{2} (Fig. 78); tarsus I ω_{1} and tarsus II ω stout, expanded slightly medially (Fig. 81D-E); medial $1 / 4$ of posterior margin of coxal plate II strongly concave (Fig. 81A); New Zealand; U.K.
(p. 34)...T. savasi Lynch, 1989
-Seta d_{1} short, $1.5(1.5-1.8) \times$ length of c_{1} and 1.6 (1.6$2.1) \times$ length of d_{2} (Fig. 48); tarsus I ω_{1} and tarsus II ω slender, parallel sided tubes (Fig. 51D-E); medial 2/3 of posterior margin of coxal plate II strongly concave (Fig. 51A); Australia, China, Germany, Japan, Mexico, Netherlands, New Zealand, Poland, South Africa, Switzerland, U.K., U.S.A.
.... (p. 27)...T. neiswanderi Johnston \& Bruce, 1965
10 Proximal part of spermathecal duct slender, nearly cylindrical (Fig. 25F, 161G-H); coxal plate II broad, its posterior margin convex (Fig. 26A, 162A) 11
-Proximal part of spermathecal duct gradually widened (Fig. 3H-I, 61B-C); coxal plate II medium sized, its posterior margin not covex (Fig. 4A, 61A) 12
11 Seta r of tarsus IV setiform (Fig. 27D); shaft of supracoxal seta scx slender, tapering from base to apex (Fig. 25D, Plate 5B); tarsus I ω_{1} and tarsus II ω slender (Fig. 26D-E); Australia, New Zealand, France, Portugal
(p. 22)...T. curvipenis Fain \& Fauvel, 1993
-Seta r of tarsus IV spiniform (Fig. 162D); shaft of supracoxal seta $s c x$ widened at bases of pectinations (Fig. 161E, Plate 5O); tarsus I ω_{1} and tarsus II ω stout (Fig. 162C-D); Australia
(p. 50)...T. womersleyi sp. n.

12 Coxal plate II with a sinuous posterior margin so that the plate narrows sharply along the distal $1 / 3$ (Fig. 61A, Plate 7B); distal $2 / 3$ of tarsus I ω_{1} obviously widened (Fig. 61D); Australia, China (mainland, Taiwan), Ecuador, Germany, Japan, Netherlands, New Zealand, U.S.A. (p. 30)...T. putrescentiae (Schrank, 1781)
-Coxal plate II a broad triangle, posterior margin nearly straight (Fig. 4A, Plate 6A); distal $1 / 4$ of tarsus I ω_{1} widened (Fig. 4D); Africa, Argentina, Australia (mainland, Lord Howe I., Norfolk I.), Brazil, Chile, China (mainland, Hong Kong, Taiwan), Cook Is, Crete, Ecuador, Fiji, Greece, Germany, India, Indonesia, Italy, Jamaica, Japan, Madagascar, Malta, Netherlands, New Zealand, Papua New Guinea, Philippines, Samoa, Singapore, Solomon Is, Spain, Thailand, Tokelau Is, Tonga, Turkey, U.K., U.S.A., Vanuatu, West Africa
(p. 18)...T. communis sp. n.

13 Setae d_{l} long, more than $2 \times$ length of c_{l}, their alveoli situated close to c_{1} (Fig. 99, 139) 14
-Setae d_{l} short, less than $2 \times$ length of c_{l}, their alveoli situated approximately midway between those of c_{1} and e_{1} (Fig. 33, 88) 15
14 Spermathecal duct very broad along its entire length, sclerites of oviduct widely spaced (Fig. 142C, Plate 13 A); tarsus I ω_{1} short, stout and clavate (Fig. 142D); setae w and r of tarsus IV spiniform (Fig. 143D); Australia, Bulgaria, U.K., Germany, Japan, Kazakhstan, Netherlands, Russia, Turkey, U.S.A.
.. (p. 46)...T. perniciosus Zakhvatkin, 1941
-Spermathecal duct slender, sclerites of oviduct narrowly spaced (Fig. 101G-H, Plate 12B); tarsus I ω_{1} slender, expanded medially giving a 'banana' shape (Fig. 102D); setae w and r of tarsus IV setiform (Fig. 103D); Australia, Netherlands, New Zealand, Tuvalu, U.K.
\qquad (p .38)... T. vanheurni Oudemans, 1924
15 Hysterosomal setae c_{1}, d_{1}, and d_{2} present as microsetae, less than $1 / 3$ distance between c_{1} and d_{1} (Fig. 88); tarsus I ω_{1} (Fig. 91D, F, Plate 14I) and tarsus II ω (Fig. 91E, G, Plate 15I) stout and obviously clavate; Australia, Belgium, China, Faroe Is., France, Germany, Iran, Iceland, Italy, Japan, Mexico, Netherlands, New Zealand, Romania, South Africa, Sweden, U.K., U.S.A., Yemen (p. 36)...T. similis Volgin, 1949
-Hysterosomal setae d_{l} about $1.3-1.8 \times$ as long as c_{l} and d_{2} (Fig. 33); tarsus I ω_{1} (Fig. 36C, Plate 14C) and tarsus II ω (Fig. 36D, Plate 15C) long slender parallel sided tubes, never expanded distally; Australia, Belgium, Bulgaria, Canada, Denmark, Ecuador, Egypt, England, Faroe Is, Finland, France, Germany, Greece, India, Indonesia, Ireland, Italy, Netherlands, New Zealand, Philippines, Poland, Sweden, U.K., Uruguay, U.S.A.
(p. 24)...T. Iongior (Gervais, 1844)

Note: Female of T. australasiae (Oudemans, 1916) is unknown. According to male characters, presumably it is similar to T. communis sp. n. and T. putrescentiae (Schrank, 1781).

Key to adult males of Tyrophagus of Australasia and Oceania (including world distributions)

1 Setae d_{2} very long, 1.7-1.9× length of c_{1} (Fig. 154); elcp long and slender (Fig. 156B); Africa, China, Germany, India, Malaysia, Nigeria, Samoa, West Africa (p. 48)...T. tropicus Robertson, 1959
-Setae d_{2} short, about as long as or slightly longer than c_{1} (Fig. 6); elcp strong (Fig. 8B)
.2
2 Prodorsal shield with a pair of pigmented eyespots (Fig. 8F, Plate 16A); lateral arms supporting aedeagus turned outwards (Fig. 8G, Plate 25A) (varying in T. robertsonae, Plate $26 \mathrm{E}, \mathrm{F}$)

3
-Prodorsal shield without pigmented eyespots (Fig. 40D, Plate 16C); lateral arms supporting aedeagus turned inwards (Fig. 41B, Plate 25E) (except T. javensis, Plate 28A) 11

3 Aedeagus with 1 major curve from lateral view (Fig. 55K, 75F, Plate 26B)

4
-Aedeagus with 2 major curves from lateral view, Sshaped (Fig. 65J, Plate 25B) 7

4 Supracoxal seta scx strong, its shaft widened at bases of pectinations (Fig. 55E-F, Plate 20D) 5
-Supracoxal seta scx slender, tapering from base to tip (Fig. 171E, Plate 20F) 6
5 Seta d_{l} long, 2.4 (2.2-2.5) \times length of c_{1} (Fig. 83); tarsus I ω_{1} and tarsus II ω stout, expanded slightly medially (Fig. 86C-D); New Zealand; U.K.
. (p. 34)...T. savasi Lynch, 1989
—Seta d_{l} short, 1.5 (1.5-1.8) \times length of c_{l} (Fig. 53); tarsus I ω_{1} and tarsus II ω slender slender, parallel-sided tubes (Fig. 56E-F); Australia, China, Germany, Japan, Mexico, Netherlands, New Zealand, Poland, South Africa, Switzerland, U.K., U.S.A. (p. 27)...T. neiswanderi Johnston \& Bruce, 1965
6 Aedeagus very small (12-13) (Fig. 75E, F, Plate 26E, F); tarsus I ω_{1} distally clavate (Fig. 76C-D); New Zealand, Thailand, U.S.A.
(p. 32)...T. robertsonae Lynch, 1989
-Aedeagus relatively long (15-16) (Fig. 171G Plate 29D); tarsus I ω_{1} long slender tube for its entire length, terminating into a distinctly pointed tip (Fig. 172DE); Tonga
(p. 51)...T. xenoductus sp. \mathbf{n}.

7 Shaft of scx slender, tapering from base to apex (Fig. $30 \mathrm{C}-\mathrm{D}$, Plate 20B); tarsus I ω_{1} and tarsus II ω slender (Fig. 31C-F); Australia, New Zealand, France, Portugal
\qquad (p. 22)...T. curvipenis Fain \& Fauvel, 1993
-Shaft of scx strong, widened where pectinations begin (Fig. 8D-E, Plate 20A); tarsus I ω_{1} and tarsus II ω relatively strong (Fig. 9D-E)

8
8 Aedeagus long $(25 \mu \mathrm{~m})$, its distal $1 / 3$ bent at an angle less than 50° to its median part in unfolded position (Fig. 136E, Plate 28D); coxal plate II broad and posteriorly convex (Fig. 137A, Plate 23D); Cook Is, Fiji, Niue, Samoa, Tonga \qquad (p. 44)...T. pacificus sp. n.
-Aedeagus not very long $(<20 \mu \mathrm{~m})$, its distal $1 / 3$ bent at an angle more than 70° to its median part in unfolded position (Fig. 8I, Plate 25B); coxal plate II not posteriorly convex (Fig. 9A, Plate 21A) 9
9 Coxal plate II narrows sharply along the distal $1 / 3$ (Fig. 66A, Plate 22A); distal $1 / 3$ of aedeagus bent at an angle about $80-100^{\circ}$ to its median part (Fig. 65J, Plate 26D); distal $2 / 3$ of tarsus I ω_{1} widened (Fig. 66C, E, G); Australia, China (mainland, Taiwan), Ecuador, Germany, Japan, Netherlands, New Zealand, U.S.A.
(p. 30)...T. putrescentiae (Schrank, 1781)
—Coxal plate II a broad triangle, posterior margin nearly straight (Fig. 9A, Plate 21A); distal $1 / 3$ of aedeagus bent at an angle more than 110° to its median part (Fig. 8I, Plate 25B); distal $1 / 4$ of tarsus I ω_{1} slightly widened (Fig. 9D) 10

10 Shaft of scx broadly widened at bases of pectinations (Fig. 8D-E, Plate 20A); tarsus I ω_{1} slightly widened from base to tip (Fig. 9D); Africa, Argentina, Australia (mainland, Lord Howe I, Norfolk I), Brazil, Chile, China (mainland, Hong Kong, Taiwan), Cook Is, Crete, Ecuador, Fiji, Greece, Germany, India, Indonesia, Italy, Jamaica, Japan, Madagascar, Malta, Netherlands, New Zealand, Papua New Guinea, Philippines, Samoa, Singapore, Solomon Is, Spain, Thailand, Tokelau Is, Tonga, Turkey, U.K., U.S.A., Vanuatu, West Africa
(p. 18)...T. communis sp. n.
-Shaft of scx slightly widened at bases of pectinations (Fig. 111D-E, Plate 20J); tarsus I ω_{1} obviously widened from base to tip (Fig. 112B); Indonesia
.............. (p. 40)...T. australasiae (Oudemans, 1916)
11 Aedeagus large, prominently long (Fig. 40E, Plate 25F) or broad (Fig. 95G, Plate 27C), more than 20 ì m. 12
—Aedeagus very small, less than 17 ì m (Fig. 106H-I, 126E, Plate 28B) \qquad 14

12 Aedeagus slender (Fig. 40E, Plate 25F); tarsus I ω_{1} and tarsus II ω slender and cylindrical (Fig. $41 \mathrm{C}-\mathrm{D}$); Australia, Belgium, Bulgaria, Canada, Denmark, Ecuador, Egypt, England, Faroe Is., Finland, France, Germany, Greece, India, Indonesia, Ireland, Italy, Netherlands, New Zealand, Philippines, Poland, Sweden, U.K., Uruguay, U.S.A. \qquad (p. 24)...T. Iongior (Gervais, 1844)
—Aedeagus broad (Fig. 95G, 146G Plate 27C); tarsus I ω_{1} and tarsus II ω stout and clavate (Fig. 96C-D, 147CD) 13

13 Hysterosomal setae c_{1}, d_{1}, and d_{2} present as microsetae, less than $1 / 3$ distance between c_{1} and d_{l} (Fig. 93); internal diameter of aedeagus tapering rapidly from distal end to midlength (Fig. 95G); setae r and w of tarsus IV positioned distal to distal sucker e (Fig. 97D, Plate 33D); Australia, Belgium, China, Faroe Is., France, Germany, Iceland, Iran, Italy, Japan, Mexico, Netherlands, New Zealand, Romania, South Africa, Sweden, U.K., U.S.A., Yemen \qquad (p. 36)...T. similis Volgin, 1949
-Hysterosomal setae d_{l} long, far exceeding beyond bases of c_{1} and e_{1}, about $4.0(3.2-4.0) \times$ length of c_{1} and 3.4 (2.9-3.4) \times length of d_{2} (Fig. 144); internal diameter of distal 3/4 of aedeagus broad (Fig. 146G); setae r and w of tarsus IV positioned between basal and distal suckers (Fig. 148D, Plate 35A); Australia, Bulgaria, England, Germany, Japan, Kazakhstan, Netherlands, Russia, Turkey, U.S.A.
(p. 46)...T. perniciosus Zakhvatkin, 1941

14 Setae w and r of tarsus IV situated between suckers (Fig. 128. D), r spiniform (Fig. 128D); tarsus I ω_{1} clavate (Fig. 127C); Australia, Ecuador, Indonesia, Panama, Philippines, Singapore, Thailand
(p. 42)...T. javensis (Oudemans, 1916)
-Setae w and r of tarsus IV situated anteriorad of distal sucker (Fig. 108D), r setiform (Fig. 108D); tarsus I ω_{1} expanded medially giving a 'banana' shape (Fig. 107C); Australia, Netherlands, New Zealand, Tuvalu, U.K........
\qquad (p. 38)...T. vanheurni Oudemans, 1924

Note: Males of T. macfarlanei sp. n. and T. womersleyi sp. n. are unknown.

Species present in New Zealand

Tyrophagus communis sp. n.

Fig. 1-22, Plates 1A, 5A, 6A, 10A, 14A, 15A, 16A, $20 \mathrm{~A}, 21 \mathrm{~A}, 25 \mathrm{~A}, \mathrm{~B}, 30 \mathrm{~A}, 31 \mathrm{~A}, 32 \mathrm{~A}$
Tyrophagus putrescentiae (Schrank, 1781); Robertson, 1959: 157 (partim, misidentification); Hughes, 1976: 51.
Diagnosis. Female. Eyespots present; scx moderately or broadly expanding from the base to beginning of pectinations then tapering gradually to a fine point, in all, the shaft bears $8-14$ pectinations, varing in lenth from short to long; d_{I} about $2.7(2.7-2.9) \times$ length of c_{l} and 2.4 $(2.0-2.4) \times$ length of $d_{2} ; d_{2}$ about $1.1(1.1-1.5) \times$ length of c_{i}; coxal plates I beyond apex of prosternal apodeme; coxal plates II broadly triangular, posterior margin very slightly concave, distal point of triangle stands slightly proud of apodeme apex. Spermathecal duct narrowing rapidly from copulatory opening for a distance about 1.2 ($0.8-1.2$) \times distance between sclerites of oviducts, forming a neck and then gradually widening to base of spermathecal sac over a distance about $1.5 \times$ distance between sclerites of oviducts, sclerotised base of spermathecal sac nearly flat or bending slightly forwards. Tarsus I ω_{1} slightly widened at apex, tarsus II ω slightly widened at apex; setae w and r of tarsus IV setiform.
Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about $2.8(2.5-2.8) \times$ length of c_{l} and 2.3 $(2.0-2.3) \times$ length of $d_{2} ; d_{2}$ about $1.2(1.0-1.2) \times$ length of c_{i}; aedeagus with two obvious curves, S -shaped, distal 1/ 3 reversely curved, tapering from base to tip, internal diameter linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio ($\mathbf{a}+\mathrm{b}$): $\mathrm{c}=2.3$ (2.2-2.3).
Description. Female (Fig. 1-5, Plates 1A, 5A, 6A, 10A, $14 \mathrm{~A}, 15 \mathrm{~A})$
Idiosoma. 432 (357-454) long, 285 (203-291) wide. Chelicera 90 (79-93) long, cheliceral seta cha conical, 5 (4-6) long, subcapitular setae $m 36(28-40)$, palpal supracoxal seta elcp 12 (10-12) long, dorsal palptibial seta 26 (1927), lateral palptibial seta 16 (10-17), dorsal palptarsal seta 13 (8-13), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield nearly pentagonal and tapering gradually from external vertical setae to posterior edege; 76 (68-79) long, 95 (77-97) wide between ve-ve. Eyespots present. Grandjean's organ finger-like, its basal lobe with 3(2-5) small spiniform teeth. Supracoxal seta scx moderately or broadly widened where pectinations begin, shaft bears 10 (8-14) long or short pectinations, 35 (33-40) long. Ratios: $v i$: $v e=1.6(1.5-1.8)$, sci: sce $=1.4(1.4-1.5)$, scisci: $s c i-s c e=1.1(1.0-1.2)$. Lengths of setae: vi 92 (73101), ve 57 (37-60), sci 177 (126-186), sce 126 (88133); distances: vi-vi 15 (11-16), vi-ve 40 (29-44), sci-
sci 35 (32-38), sci-sce 31 (25-34). Hysterosomal setae d_{l} about $2.7(2.7-2.9) \times$ length of c_{l} and $2.4(2.0-2.4) \times$ length of $d_{2} ; d_{2}$ about $1.1(1.1-1.5) \times$ length of c_{1}; lengths of setae: $c_{1} 35$ (25-37), $c_{2} 184$ (152-190), $c_{p} 162$ (132171), $c_{3} 42$ (36-44), $d_{1} 95$ (73-100), $d_{2} 40$ (37-46), $e_{1} 277$ (257-288), $e_{2} 162$ (154-177), $f_{2} 279$ (261-289), $h_{l} 281$ (232-299), $h_{2} 319$ (284-332), $h_{3} 252$ (224-264); distances: $c_{1}-c_{1} 102(78-107), c_{1}-d_{1} 70(50-74), d_{1}-d_{1} 35(25-38)$, d_{2}-gla 50 (39-56), $d_{1}-e_{1} 81$ (63-89), $e_{1}-e_{1} 111$ (75-122). Venter. Coxal plate I beyond apex of prosternal apodeme; coxal plates II broadly triangular, posterior margin very slightly concave, distal point of triangle stands slightly proud of apodeme apex (rarely, found to be strongly concave on one side). Setae la 1.1 (0.9-1.2) \times length of coxal plate II, 60 (47-66), $3 a 31$ (22-33); 3b 3.5 (3.3-3.7)× length of $3 a, 108$ (76-111); g 25 (15-27), $4 a 90$ (63-97). Pseudanal setae $p s_{1} 1.4(1.3-2.1) \times$ as long as $p s_{2}, 189$ (162-201) long, $p s_{2} 4.6(4.2-5.1) \times$ length of $p s_{3}, 137$ (83142) long, $\mathrm{ps}_{3} 30$ (18-30). Adanal setae $\mathrm{ad}_{1} 23$ (14-23), $a d_{2} 21$ (14-21), $a d_{3} 20$ (12-21). Copulatory opening 5 (5-7) in diameter, spermathecal duct narrowing rapidly from copulatory opening for a distance about 1.2 (0.8$1.2) \times$ distance between sclerites of oviducts, forming a neck and then gradually widening to base of spermathecal sac over a distance about $1.5 \times$ distance between sclerites of oviducts, sclerotised base of spermathecal sac nearly flat or bending slightly forwards, distance between sclerites of oviducts 17 (13-20).
Legs. Leg I. 211 (188-223) long; femur I 51 (46-53), $v F$ simple, 55 (42-57) long; genu I 36 (28-38), $\sigma^{\prime} 40$ (24-45), $\sigma^{\prime \prime} 22$ (13-27), I $\sigma^{\prime}: \sigma^{\prime \prime}=1.5$ (1.5-2.0), cG 38(35-340), $m G 53$ (37-55); tibia I 32 (29-32), $\varphi 108$ (101-108), gT 35 (32-38), hT 41 (35-44); tarsus I 83 (71-87) long, 20 (18-21) wide, ω_{1} slightly widened at apex, 15 (15-16) long, $\varepsilon 4$ (4-4.5), $\omega_{2} 5$ (5-6), $\omega_{3} 19$ (19-23), distance between $a a$ and ω_{1} about 13 (10-13), aa 22 (19-23) long, ba 20 (20-24), wa 46 (32-48), ra 32 (25-33), la 21 (2023), $d 36$ (32-38), e 7 (5-7), $f 18$ (15-19), $s 5$ (5-6), u and $v 4(4-5), p$ and $q 6$ (6-7), empodium 17 (15-20), claw 15 (13-16). Leg II. 195 (174-203) long; femur II 51 (4254), $v F 65$ (47-65); genu II 40 (37-42), $\sigma 18$ (18-19), $c G$ 38 (33-40), $m G 50$ (45-53); tibia II 30 (27-30), $\varphi 108$ (101-114), gT 34 (32-38), hT 41 (33-44); tarsus II 83 (71-88) long, 19 (18-20) wide, ω slightly widened at apex, 17 (17-19) long, ba 29 (23-30), wa 40 (37-44), ra 30 (24-33), la 23 (19-25), d 30 (26-35), e 6 (6-7), f 13 (11-15), $s 5$ (5-6), u and $v 4$ (4-5), p and $q 6$ (6-7), empodium 15 (13-17), claw 13 (12-13). Leg III. 217 (177-221) long; femur III 42 (36-43); genu III 33 (3034), $\sigma 17$ (13-19), $n G 56$ (43-57); tibia III 34 (26-35), φ 96 (92-111), kT 52 (41-58); tarsus III 92 (78-102) long, 14 (14-17) wide, $w 35$ (29-39), r 30 (21-33), d 33 (30-
33), e $6(6-7), f 28(21-29), s 5(5-6), u 4, v 5(5-6), p$ and q 3 (2-4), empodium 15 (13-16), claw 12 (12-14). Leg IV. 248 (218-253) long; femur IV 50 (44-53), wF 49 (4162); genu IV 43 (38-44); tibia IV 40 (32-42), 甲 82 (82101), kT 34 (30-41); tarsus IV 99 (85-103) long, 13 (1315) wide, w setiform, 31 (29-32) long, r setiform, 21 (1522) long, $d 40$ (29-43), e 5 (5-6), f30 (26-35), s 5 (5-6), $u 4, v 5$ (5-6), p and $q 3$ (2-3), empodium 14 (13-16), claw 13 (12-13).

Male (Fig. 6-10, Plates 16A, 20A, 21A, 25A, B, 30A, $31 \mathrm{~A}, 32 \mathrm{~A}$)
Idiosoma. 429 (371-437) long, 280 (209-283) wide. Chelicera 85 (82-85) long, cheliceral seta cha conical, 6 (4-7) long, subcapitular setae $m 34$ (34-36), palpal supracoxal seta elcp 18 (11-20) long, dorsal palptibial seta 16 (1416), lateral palptibial seta 12 (10-13), dorsal palptarsal seta 12 (8-13), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield as in female, 71 (68-72) long, 85 (75-89) wide between ve-ve. Eyespots present. Grandjean's organ as in female, 12 (11-13) long; supracoxal seta scx 32 (31-33) long. Ratios: $v i: v e=1.8(1.8-2.0)$, sci: $s c e=1.7$ (1.6-1.7), sci-sci: $s c i-s c e=1.1$ (1.1-1.2). Lengths of setae: vi 91 (87-93), ve 50 (42-52), sci 189 (169-192), sce 111 (92-117); distances: vi-vi 12 (11-13), vi-ve 35 (30-38), sci-sci 30 (30-36), sci-sce 28 (25-30). Hysterosomal setae d_{l} about $2.8(2.5-2.8) \times$ length of c_{l} and $2.3(2.0-2.3) \times$ length of $d_{2} ; d_{2}$ about $1.2(1.0-1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 30(28-33), c_{2} 205$ (171212), $c_{p} 178$ (132-183), $c_{3} 35$ (32-37), $d_{1} 85$ (71-90), d_{2} 35 (29-337), $e_{1} 287$ (282-290), $e_{2} 206$ (203-211), $f_{2} 301$ (313-332), $h_{1} 307$ (305-310), $h_{2} 315$ (308-317), $h_{3} 286$ (283-292); distances: $c_{1}-c_{l} 95$ (93-102), $c_{1}-d_{l} 58$ (5662), $d_{1}-d_{1} 33$ (31-35), d_{2}-gla 55 (51-57), $d_{1}-e_{1} 85$ (7589), $e_{1}-e_{l} 96$ (90-97). Venter. Shape of coxal plates I and II as in female. Setae la $1.1(1.0-1.1) \times$ length of coxal plate II, 54 (43-57); 3a 29 (18-31); 3b 3.4 (3.0-5.1)× length of $3 a$, 99 (91-100); g 22 (17-24), 4a 89 (88-93). Aedeagus with two obvious curves, S-shaped, distal $1 / 3$ reversely curved, tapering from base to tip, 17 (16-18) long, internal diameter linear; lateral arms supporting aedeagus turning outwards. Anal slit 65 (63-67) long, distance between anterior rim of anal slit and posterior margin of aedeagus 20 (16-23). Anal suckers about 24 (21-26) in diameter; anal discs 4 (4-4.5) in diameter, distances between right and left discs 30 (27-32). Pseudanal setae $p s_{1}$ about 1.6 (1.6-1.9)× length of $p s_{2}, 225$ (219229) long, $p s_{2} 9.2$ (8.4-9.2) \times length of $p s_{3}$, 138 (117-145) long, $p s_{3} 15$ (14-17); $p s_{2}-p s_{2} 1.7$ (1.7-1.9) \times distance $p s_{1}-$ $p s_{1}, p s_{1}-p s_{1} 30$ (29-34), $p s_{2}-p s_{2} 64$ (61-66).
Legs. Leg I. 202 (198-205) long; femur I 51 (49-52), $v F$ simple, 53 (51-55) long; genu I 37 (36-38), $\sigma^{\prime} 37$ (30-44),
$\sigma^{\prime \prime} 21$ (17-23), I $\sigma^{\prime}: \sigma^{\prime \prime}=1.8(1.2-2.4), c G 39(37-40), m G$ 53 (49-55); tibia I 30 (29-31), $\varphi 102$ (98-111), gT 34 (33-36), hT 35 (34-37); tarsus I 80 (73-87) long, 19 (1720) wide, shape of ω_{1} as in female, 14 (13-15) long, $\varepsilon 3$ (3-4), $\omega_{2} 5(4-5), \omega_{3} 22$ (21-24), distance between $a a$ and ω_{1} about 13 (11-14), aa 19 (14-21) long, ba 22 (20-24), wa 45 (37-48), ra 33 (29-35), la 21 (17-23), d 35 (3338), e 6 (6-7), $f 16$ (14-18), $s 5, u$ and $v 4, p$ and $q 6$, empodium 17 (16-18), claw 14 (13-16). Leg II. 200 (197203) long; femur II 48 (47-51), $v F 59$ (57-61); genu II 38 (32-40), $\sigma 20$ (19-21), cG 33 (25-36), $m G 44$ (43-47); tibia II 28 (27-31), $\varphi 103$ (90-109), gT34 (33-35), hT 36 (34-36); tarsus II 79 (71-82) long, 18 (16-19) wide, ω as in female, 15 (15-16) long, ba 24 (22-24), wa 30 (21-31), ra 32 (29-34), la 22 (16-22), d 33 (27-35), e 6 (6-7), f16 (14-17), $s 5, u$ and $v 4, p$ and $q 6$, empodium 16 (14-17), claw 13 (12-14). Leg III. 210 (200-221) long; femur III 43 (40-44); genu III 36 (35-38), б 16 (15-16), nG 61 (59-61); tibia III 31 (27-36), 甲 107 (103-111), kT 52 (50-54); tarsus III 86 (82-90) long, 13 (13-14) wide, w 35 (35-37), $r 32$ (30-32), d 33 (33-35), e 6 (6-7), f 31 (30-33), $s 5$ (5-6), $u 4, v 5$ (5-6), p and q 3, empodium 16 (14-17), claw 12 (12-14). Leg IV. 234 (231-239) long; femur IV 48 (44-50), wF 50 (47-53); genu IV 40 (36-42); tibia IV 33 (33-36), $\varphi 98$ (98-102), kT 38 (30-42); tarsus IV 90 (87-93) long, 14 (13-15) wide, w and r situated at level between suckers, w setiform, 33 (28-36) long, r setiform, 20 (16-22) long, distance between basal rim of tarsus IV and proximal sucker $d 25$ (24-26), between d and $e 25$ (24-26), between e and $f 22(21-24)$, ratio (a+b): $\mathrm{c}=2.3(2.2-2.3), f 35(33-35), s 5(5-6), u 4, v 5(5-6), p$ and $q 3$, empodium 15 (14-17), claw 12 (12-14).

Tritonymph (Fig. 11-14)

Idiosoma. 331 long, 190 wide. Chelicera 60 long, movable digit 23 , cheliceral seta cha conical, 3.5 long, subcapitular setae $m 23$, palpal supracoxal seta elcp 9 long, dorsal palptibial seta 16, lateral palptibial seta 10 , dorsal palptarsal seta 8, palptarsal solenidion 4. Dorsum. Prodorsal shield as in female, 62 wide between veve. Eyespots present. Grandjean's organ finger-like. Supracoxal seta scx 23 long, widening at bases of pectinations, shaft with 8 medium or short pectinations. Ratios: $v i$: $v e=1.5, s c i: s c e=1.8, s c i-s c i: s c i-s c e=1.2$. Lengths of setae: vi 56, ve 37, sci 131, sce 74; distances: $v i-v i 10$, vi-ve 26, sci-sci 27, sci-sce 22. Hysterosomal setae d_{1} about $2.6 \times$ length of c_{1} and $2.6 \times$ length of $d_{2} ; d_{2}$ about $1.0 \times$ length of c_{1}; lengths of setae: $c_{1} 21, c_{2} 126, c_{p}$ $100, c_{3} 31, d_{1} 54, d_{2} 21, e_{1} 191, e_{2} 119, f_{2} 191, h_{1} 201, h_{2}$ 206, h_{3} 179; distances: $c_{1}-c_{1} 73, c_{1}-d_{1} 47, d_{1}-d_{1} 29, d_{1}-e_{1}$ 63, $e_{1}-e_{1} 78$. Venter. Coxal plates I and II very faint. Setae la 31, $3 a 16 ; 3 b 2.9 \times$ length of $3 a, 47 ; g 14,4 a 47$.

Pseudanal setae $p s_{1} 2.1 \times$ as long as $p s_{2}, 96$ long, $p s_{2} 4.2 \times$ length of $p s_{3}, 46$ long, $p s_{3} 11$. Adanal setae, male and female reproductive organs absent.
Legs. Leg I. 121 long; femur I 32, $v F$ simple, 33 long; genu I 23, $\sigma^{\prime} 22, \sigma^{\prime \prime} 11$, I $\sigma^{\prime}: \sigma^{\prime \prime}=2.0, c G 18, m G 26$; tibia I 18, $\varphi 70, g T 20, h T 15$; tarsus I 46 long, ω_{1} slightly widened at apex, 13 long, $\varepsilon 4, \omega_{2} 4, \omega_{3} 13$, aa 8 long, ba 10 , wa 15 , ra 15 , la 12, $d 25, e 6, f 12, s 5, u$ and $v 5, p$ and $q 6$, empodium 10, claw 11. Leg II. 113 long; femur II $32, v F 36$; genu II $21, \sigma 7, c G 19, m G 22$; tibia II $18, \varphi 73, g T 14, h T 16$; tarsus II 42 long, ω slightly widened at apex, 12 long, $b a$ 12, wa 15, ra 16, la 12, $d 23, e 6, f 13, s 5, u$ and $v 5, p$ and $q 6$, empodium 10, claw 11. Leg III. 124 long; femur III 17; genu III 21, $\sigma 7, n G 28$; tibia III 17, $\varphi 66, k T 23$; tarsus III 50 long, $w 19, r 14, d 19, e 5, f 18, s 4.5, u 3, v 4, p$ and $q 1.5$, empodium 10, claw 10. Leg IV. 141 long; femur IV 29, wF 24; genu IV 25; tibia IV 12, $\varphi 53, k T 19$; tarsus IV 52 long, $w 19, r 16, d 20, e 5, f 19, s 4, u 3, v 4, p$ and $q 1$, empodium 9, claw 10.

Protonymph (Fig. 15-18)

Idiosoma. 235 long, 108 wide. Chelicera 50 long, movable digit 17, cheliceral seta cha conical, 3 long, subcapitular setae m 18, palpal supracoxal seta elcp 8 long, dorsal palptibial seta 13, lateral palptibial seta 9, dorsal palptarsal seta 7, palptarsal solenidion 4. Dorsum. Prodorsal shield faint, 57 wide between ve-ve. Eyespots present. Grandjean's organ finger-like. Supracoxal seta scx 21 long, widening at bases of pectinations, shaft with $8-10$ medium or short pectinations. Ratios: vi: ve $=1.6$, sci: sce $=$ 1.8 , sci-sci: sci-sce $=1.0$. Lengths of setae: $v i 42$, ve 27 , sci 81 , sce 45 ; distances: vi-vi 8 , vi-ve 24 , sci-sci 22 , scisce 21 . Hysterosomal setae d_{1} about $1.9 \times$ length of c_{1} and $1.9 \times$ length of $d_{2} ; d_{2}$ about $1.0 \times$ length of $c_{1} ;$ lengths of setae: $c_{1} 16, c_{2} 55, c_{p} 60, c_{3} 17, d_{1} 31, d_{2} 16, e_{1} 105, e_{2} 42$, $f_{2} 127, h_{1} 113, h_{2} 134, h_{3} 86$; distances: $c_{1}-c_{1} 58, c_{1}-d_{1} 35$, $d_{1}-d_{1} 19, d_{1}-e_{1} 43, e_{1}-e_{1} 43$. Venter. Coxal plates I and II very faint; with 1 pair of genital papillae. Setae $3 a$ and $4 a$ absent; la 21, $3 b 29 ; g$ 10. Pseudanal setae $p s_{1} 1.9 \times$ as long as $p s_{2}, 28$ long, $p s_{2} 1.9 \times$ length of $p s_{3}, 15$ long, $p s_{3} 8$. Adanal setae, male and female reproductive organs absent.
Legs. Leg I. 90 long; femur I $25, v F$ simple, 22 long; genu I 16, $\sigma^{\prime} 14, \sigma^{\prime \prime} 10$, I $\sigma^{\prime}: \sigma^{\prime \prime}=1.4, c G 16, m G 16$; tibia I 14, $\varphi 52, g T 12$, $h T 11$; tarsus I 35 long, ω_{1} slightly widened at apex, 10 long, $\varepsilon 3.5, \omega_{2} 4, \omega_{3}$ absent, aa 8 long, ba 10 , wa 13, ra 12, la 10, d 20, e 5, f10, s $4, u$ and $v 4, p$ and $q 5$, empodium 10, claw 9. Leg II. 83 long; femur II 25, $v F 24$; genu II $15, \sigma 6, c G 14, m G 13$; tibia II $13, \varphi 51, g T 10, h T$ 12; tarsus II 32 long, ω slightly widened at apex, 7 long, ba 8 , wa 12 , ra $11, l a 9, d 20, e 5, f 10, s 4, u$ and $v 4, p$ and q 5, empodium 9, claw 9. Leg III. 92 long; femur III 20;
genu III 14, $\sigma 5.5, n G 20$; tibia III 13, $\varphi 49, k T 17$; tarsus III 35 long, $w 14, r 13, d 16, e 4, f 13, s 4, u 3, v 4, p$ and q 1, empodium 9, claw 9. Leg IV. 91 long; femur IV $17, w F$ absent; genu IV 13 ; tibia IV $13, \varphi$ and $k T$ absent; tarsus IV 36 long, $w 15, r 10, d 13, e 4, f$ absent, $s 4, u 3, v 3.5, p$ and $q 1$, empodium 9 , claw 8 .

Larva(Fig. 19-22)
Idiosoma. 182 long, 108 wide. Chelicera 39 long, movable digit 14, cheliceral seta cha tiny, 2 long, subcapitular setae m 16, palpal supracoxal seta elcp 5 long, dorsal palptibial seta 9, lateral palptibial seta 6, dorsal palptarsal seta 5, palptarsal solenidion 2. Dorsum. Prodorsal shield and eyespots not observed, ve-ve 38 . Grandjean's organ finger-like. Supracoxal seta scx slightly widened at bases of pectinations and barbed, 14 long. Ratios: $v i: v e=1.2$, sci: $s c e=2.3, s c i-s c i: s c i-s c e=1.1$. Lengths of setae: $v i$ 31, ve 26, sci 52, sce 23; distances: vi-vi 5, vi-ve 19, scisci 20 , sci-sce 18 . Hysterosomal setae f_{2} and h_{3} absent; d_{1} about $1.2 \times$ length of c_{1} and $1.3 \times$ length of $d_{2} ; d_{2}$ about $0.9 \times$ length of c_{l}; lengths of setae: $c_{1} 13, c_{2} 30, c_{p} 45, c_{3} 17$, $d_{1} 16, d_{2} 12, e_{1} 71, e_{2} 19, h_{1} 119, h_{2} 58$; distances: $c_{1}-c_{1} 51$, $c_{1}-d_{1} 26, d_{1}-d_{1} 21, d_{1}-e_{1} 40, e_{1}-e_{1} 41$. Venter. Without genital opening and papillae. Setae $3 a, g$ and $4 a$ absent; $1 a$ $12,3 b 25$. Pseudanal setae and adanal setae absent.
Legs. Leg I. 74 long; femur I $18, v F$ simple, 19 long; genu I 13, $\sigma^{\prime} 12, \sigma^{\prime \prime} 5$, I $\sigma^{\prime}: \sigma^{\prime \prime}=2.4, c G 17, m G 11$; tibia I 11, φ $43, g T 10, h T 9$; tarsus I 30 long, $\omega_{1} 7$ long, $\varepsilon 3, \omega_{2}$ and ω_{3} absent, aa 6 long, ba 7, wa 11, ra 10, la $6, d 11, e 4, f 6, s$ 3, u and $v 2.5, p$ and $q 3$, empodium 8, claw 7. Leg II. 68 long; femur II $16, v F 20$; genu II $11, \sigma 5, c G 13, m G 8$; tibia II $10, \varphi 41, g T 9, h T 5$; tarsus II 25 long, $\omega 6$ long, ba 6 , wa 11, ra 10, la 7, d 13, e 4,f9,s 3, u and $v 3, p$ and q 3.5,empodium 8, claw 7. Leg III. 80 long; femur III 15; genu III 12, $\sigma 4.5, n G 19$; tibia III 11, $\varphi 43, k T 15$; tarsus III 30 long, $w 13, r 15, d 7, e 4, f 12, s 3, u 2, v 3, p$ and q 1,empodium 7, claw 7 .

Distribution. BASED ON MATERIAL EXAMINED: New Zealand: ND, AK, WO, HB, GB, WI, WI/WN, RI/ WA, WN / MB, MC, OL.

Other countries: Africa, Argentina, Australia (mainland, Lord Howe I., Norfolk I.), Brazil, Chile, China (mainland, Hong Kong, Taiwan), Cook Is, Crete, Ecuador, Fiji, Greece, Germany, India, Indonesia, Italy, Jamaica, Japan, Madagascar, Malta, Netherlands, Papua New Guinea, Philippines, Samoa, Singapore, Solomon Is, Spain, Thailand, Tokelau Is, Tonga, Turkey, U.K., U.S.A., Vanuatu, West Africa.
Material examined. Holotype, 66 paratypes, and 1515 non-type specimens - see Appendix 1 for details of specimens examined.

Habitat and host. PLANT OR PLANT PRODUCTS: agar tissue culture of orchids, almonds, asparagus, banana, bark scrapings, beans in kitchen cupboard, Caladium, calyx end of orange, caper seed, capsicum, chaff, Cissus antarctica seed, citrus, Citrus limon, cocoa beans, coconuts, Coffea arabica, Colocasia esculenta bulbs, copra, corn, Cryptes baccarum, cucumber leaf, culture of Tribolium, curry leaves, cycad palm seed, dahlia bulbs, damp grain, debris in container, decaying coconut, dormant bulb, dried fig, dried food, dried fruit, dried lychees, dried vegetable leaf, dust in grain silo, egg plant, feijoa, figs, food stuffs in household pantry, Freesia sp. bulb, garlic, gladioli bulbs, grain, hyacinth, buffet, Iris bulbs, kangaroo diet, kentia palm, lemon, Lauris nobilis leaves, lychee, matua on nutmeg, mixed grain-horse fodder-young stock foods, molactrate molasses blocks, mould in hazel nuts, Muscari bulbs, mushrooms, Narcissus bulbs, Nipa palm leaves, onions, orange, orchid plants, Orchidaceae, palm seeds, peanuts, persimmons, pimentos, pine tree seeds, pineapple, plant roots, Plumeria sp., potato, pollen from hive, Ranunculus bulb, raspberry jam, red dates, rice plant, roses, saint paulia, seed of Acer pseudoplatanus, seeds \& spices, soil, soya bean, stored sorghum, strawberries, taro, Theobroma cacao, tomato, tulip bulbs, vanilla beans, vanilla pods, Virgilia divaricata, water chestnut (Scirpus tuberosus), wheat grain ex silo, wheat stores in lab, Ya pear, yams.

FUNGUS: fungus culture, Sporotrichum.
ANIMAL OR ANIMAL PRODUCTS: beehive, Calolampra, cheese, cheshire cheese, cockroach colony, cracks \& floor, dead larva in wood of citrus borer, dead Prionoplus reticularis (Coleoptera: Cerambycidae), dried milk powder, dried shell fish, dust-bed, dust beneath banana leaf matting, fish house, glass surface in house, Gouda cheese, house, human urine, "Kai-iwi" foil wrapped cheese, kitchen in farmhouse, lab culture of Psocoptera, Locusta migratoria, mealworm culture, millipede (Polyconoceris alaskis), Nauphota (cockroach), pallet and bag scrapings, passalid beetle, rabbit, rooster feathers "Tintinhull", sheep faeces, silverfish culture, spoon from kitchen of a house, Tineola biselliella.

Etymology. The species name is from the Latin word communis, meaning common or shared by all or many, referring to the wide distribution and broad range of habitat and hosts.

Remarks. Tyrophagus communis closely resembles T. putrescentiae (Schrank) in prodorsal shield character, shape of supracoxal setae, solenidion ω on tarsus II, spermathecal duct in female, aedeagus and tarsus IV in male, but differs from the latter in coxal plates II broadly triangular, posterior margin very slightly concave, distal point of triangle
stands slightly proud of apodeme apex (Fig. 3, 4, 9) rather than posterior margin of plate being strongly concave (Fig. 61, 66). It also differs from T. putrescentiae in the aedeagus being shorter and slightly curved (Fig. 8) rather than longer and obviously curved (Fig. 65). The supracoxal seta of T. communis tends to be wider at bases of pectinations (Fig. 3) compared with Fig. 65, and its solenidion ω_{1} on tarsus I tends to be slightly widened at apex (Fig. 4, 9) rather than obviously widened (Fig. 61, 66).

Further, adult males are similar to the lectotype of T. australasiae designated by Robertson (1959) and to another male on the slide labelled "Tyroglyphus australasiae Oudemans 1915, ơ dors., vent., No. 8, P6921, Op kop van gowia, Jamoer, (Nieuw Guinea), 6.8.1903, De Beaufort en Lorentz" in the characters of eyespots, shape of solenidia ω_{1} of tarsus I and ω of tarsus II, structure of lateral arms supporting aedeagus, and position of suckers of tarsus IV, and shape of coxal plates II, but differs from the latter in shaft of supracoxal setae being obviously widened at point where pectinations begins, as well as having more (13-16) pectinations (Fig. 3) rather than slender and with less (8) pectinations (Fig. 111). Unfortunately, aedeagi of both males mounted on Oudemans' slide (No. 8, P6921) are folded dorsoventrally and females are unknown which limits the evidence for separating these two species (communis and australasiae). There are no differences between aedeagi of T. communis sp. n. and three males including a male designated as lectotype of T. javensis (Oudemans) by Robertson (1959) (misidentification, discussed under T. australasiae and T. javensis) on the slide labelled "Tyroglyphus australasiae Oudemans, ơ dors., vent., lat., No. 6, P6610, Op eieren van Plagiolepis longipes (mier), Salatiga, Maart 1915, P.V.D. Goof'. But solenidion ω_{1} on tarsus I of T. communis $\mathbf{s p}$. \mathbf{n}. is slightly widened at apex (Fig. 9) rather than obviously widened in the latter (Fig. 117).

Robertson's figures of T. putrescentiae (Schrank) are based on the specimens in BMNH labelled "Tyrophagus putrescentiae (Schrank), $60^{\pi} 0^{\pi}$, 11 우, + , ex cheese, Sutton Bonington, Leics., 20/10/50, P.L.R. Coll. No. 160(b)". After comparing with the neotype (No. 17, P6984) of T. putrescentiae designated by Robertson (1959) in the Oudemans collection (RMNH) we find that two distinct species are involved. Prior to this revision, it would have been difficult to separate this newly recognised species from T. putrescentiae Oudemans. Our new study of the coxal plate and apodeme in females and its application to species identification allows relatively easy separation of these two species. Many previous records of T. putrescentiae in the literature are likely to refer to T. communis. Because of this, it is impossible to provide a summary of distribution and biology information of this
new species based on literature at this time.
Our examination of a large number of specimens from many countries indicates that T. communis has a wider distribution than T. putrescentiae.

Tyrophagus curvipenis Fain \& Fauvel

Fig. 23-32, Plates 1B, 5B, 6B, 10B, 14B, 15B, 16B, $20 \mathrm{~B}, 21 \mathrm{~B}, 25 \mathrm{C}, \mathrm{D}, 30 \mathrm{~B}, 31 \mathrm{~B}, 32 \mathrm{~B}$
Tyrophagus curvipenis Fain \& Fauvel, 1993: 95.
Diagnosis. Female. Eyespots prominent; scx slender, with 6-8 moderate or short pectinations; d_{1} about 3.0 $(2.7-3.0) \times$ length of c_{1} and $2.6(2.6-2.8) \times$ length of $d_{2} ; d_{2}$ about $1.2(1.0-1.2) \times$ length of c_{1}; coxal plates I extending just beyond apex of apodeme; coxal plates II broadly triangular, extending distally beyond apex of apodeme II, with $1 / 3$ of posterior margin slightly concave. Spermathecal duct narrowing gradually from copulatory opening for a distance about $1.5(1.3-1.8) \times$ distance between sclerites of oviducts and then extending to base of spermathecal sac over a distance about $2.8 \times$ distance between sclerites of oviducts, base of spermathecal sac r-shaped. Tarsus I ω_{1} slender, cylindrical and slightly widened at apex, tarsus II ω slender, almost cylindrical; setae w and r of tarsus IV setiform.

Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about $3.0(3.0-3.2) \times$ length of c_{1} and 2.0 $(2.0-2.3) \times$ length of $d_{2} ; d_{2}$ about $1.5(1.3-1.5) \times$ length of c_{l}; aedeagus with two obvious curves, S-shaped, distal $2 /$ 5 reversely curved, tapering from base to tip, internal diameter linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=3.5$ (3.2-3.5).
Description. Female (Fig. 23-27, Plates 1B, 5B, 6B, 10B, 14B, 15B)
Idiosoma. 367 (367-479) long, 212 (212-241) wide. Chelicera 80 (80-91) long, cheliceral seta cha conical, 4 (4-5) long, subcapitular setae $m 32$ (32-37), palpal supracoxal seta elcp 11 (11-13) long, dorsal palptibial seta 26 (2630), lateral palptibial seta 14 (14-18), dorsal palptarsal seta 12 (12-15), palptarsal solenidion 3 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins behind eye spots strongly concave; 80 ($80-85$) long, 80 ($80-85$) wide between ve-ve. Eyespots present, prominent. Grandjean's organ finger-like, smooth, 16 (16-17) long, its basal lobe with $2-3$ spiniform teeth. Supracoxal seta scx slender or slightly widened, tapering from base to tip, with $8(6-8)$ moderate or short pectinations, 28 (2428) long. Ratios: $v i$: $v e=1.9$ (1.7-2.0), sci: $s c e=2.0(2.0-$ 2.1), sci-sci: $s c i-s c e=1.5(1.2-1.5)$. Lengths of setae: $v i$ 99 (76-103), ve 51 (45-52), sci 197 (169-211), sce 97
(84-99); distances: vi-vi 13 (11-14), vi-ve 34 (33-37), sci-sci 30 (28-33), sci-sce 20 (20-27). Hysterosomal setae d_{1} about $3.0(2.7-3.0) \times$ length of c_{1} and 2.6 (2.6$2.8) \times$ length of $d_{2} ; d_{2}$ about $1.2(1.0-1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 31$ (29-33), $c_{2} 229$ (198-240), $c_{p} 205$ (191-221), $c_{3} 51$ (45-54), $d_{1} 94$ (79-99), $d_{2} 36(30-36), e_{1}$ 357 (329-371), e 289 (271-301), $f_{2} 373$ (366-403), h_{1} 417 (395-431), $h_{2} 442$ (402-449), $h_{3} 293$ (275-300); distances: $c_{1}-c_{1} 74(70-80), c_{1}-d_{1} 45(41-48), d_{1}-d_{1} 24$ (2327), $d_{2}-$ gla 47 (45-50), $d_{1}-e_{1} 51$ (48-54), $e_{1}-e_{1} 59$ (5762). Venter. Coxal plates I extending just beyond apex of apodeme; coxal plates II broadly triangular, extending distally beyond apex of apodeme II, with $1 / 3$ of posterior margin slightly concave. Setae $1 a 1.0(1.0-1.1) \times$ length of coxal plate II, 47 (46-50), 3a 27 (25-27); 3b 2.7 (2.7$2.8) \times$ length of $3 a, 72$ (69-75); $g 22$ (19-23), 4a 78 (7081). Pseudanal setae $p s_{1} 1.8(1.8-1.9) \times$ as long as $p s_{2}, 251$ (233-267) long, $p s_{2} 6.2$ (5.7-6.2) \times length of $p s_{3}, 136(125-$ 144) long, $p s_{3} 22$ (22-24). Adanal setae $a d_{1} 16$ (15-17), $a_{2} 14$ (14-16), $a_{3} 13$ (12-14). Copulatory opening 7 (5-6) in diameter, spermathecal duct narrowing gradually from copulatory opening for a distance about 1.5 (1.3$1.8) \times$ distance between sclerites of oviducts and then extending to base of spermathecal sac over a distance about $2.8 \times$ distance between sclerites of oviducts, base of spermathecal sac r-shaped, distance between sclerites of oviducts 17 (16-18).

Legs. Leg I. 187 (181-195) long; femur I 52 (49-54), $v F$ simple, 44 (44-50) long; genu I 30 (29-33), $\sigma^{\prime} 44$ (45-51), $\sigma " 30(28-31)$, I $\sigma \prime: \sigma "=1.5$ (1.5-1.6), $c G 38$ (35-39), $m G$ 43 (39-45); tibia I 31 (29-32), 甲 109 (99-112), gT 36 (35-38), hT37 (37-40); tarsus I 82 (79-84) long, 25 (22$25)$ wide, ω_{1} slender, slightly widened at apex, 17 (16-18) long, $\varepsilon 4$ (3-4), $\omega_{2} 6.5$ (6-7), $\omega_{3} 21$ (19-23), distance between $a a$ and ω_{1} about 11 (9-12), aa 24 (24-27) long, ba 27 (25-28), wa 46 (44-48), ra 29 (29-33), la 28 (2529), $d 36$ (35-38), e 5 (5-6), $f 16$ (15-17), $s 6$ (6-6.5), u and $v 6(6-7), p$ and $q 7$ (7-7.5), empodium 16 (14-17), claw 16 (15-17). Leg II. 194 (191-200) long; femur II 48 $(45-55), v F 54(50-55)$; genu II 35 (33-36), б 24 (23-27), $c G 34$ (31-35), $m G 44$ (42-45); tibia II 31 (30-33), $\varphi 118$ (108-120), gT 32 (30-33), hT 41 (40-43); tarsus II 89 (85-92) long, 23 (22-25) wide, ω slender, nearly cylindrical, 23 (21-24) long, ba 26 (25-28), wa 44 (44-48), ra 35 (32-36), la 25 (25-27), d 35 (33-35), e 6 (5-6), f16 (1417), $s 5$ (5-6), u and $v 4$ (4-5), p and $q 5$ (5-6), empodium 14, claw 14 (14-15). Leg III. 175 (171-201) long; femur III 41 (39-44); genu III 31 (30-34), $\sigma 18$ (18-24), nG 42 (39-44); tibia III 27 (26-29), 甲 119 (107-120), kT 44 (42-47); tarsus III 75 (74-81) long, 20 (17-22) wide, w setiform, 37 (36-41) long, r setiform, 32 (30-35) long, d

27 （25－31），e $6(6-7), f 26(24-30), s 5(5-6), u 4(4-4.5)$ ， $v 6$（5－6），p and $q 4$（3－4），empodium 13 （12－15），claw 12 （11－15）．Leg IV． 222 （207－218）long；femur IV 46 （43－ 48），$w F 43$（42－47）；genu IV 38 （36－40）；tibia IV 30 （30－ 33），$\varphi 125$（115－125），kT 40 （37－42）；tarsus IV 94 （88－ 97）long， 20 （17－20）wide，w setiform， 38 （36－40）long，r setiform， 22 （20－23）long，$d 27$（25－29），e 6 （5－6），f 25 （23－27），$s 6$（6－6．5），$u 4$（4－5），v 6 （6－6．5），p and $q 3$（2－ 3），empodium 14 （13－16），claw 15 （15－17）．
Male（Fig．28－32，Plates 16B，20B，21B，25C，D，30B， 31B，32B）
Idiosoma． 321 （298－405）long， 205 （188－222）wide．Che－ licera 62 （59－64）long，cheliceral seta cha conical，4（3－4） long，palpal supracoxal seta elcp 11 （11－12）long， subcapitular setae $m 28$（26－33），dorsal palptibial seta 20 （18－21），lateral palptibial seta 13 （12－15），dorsal palptarsal seta 12 （12－15），palptarsal solenidion 3（3－4）． Dorsum．Prodorsal shield as in female， 65 （58－65）long， 65 （65－70）wide between ve－ve．Eyespots prominent． Grandjean＇s organ as in female， 14 （13－15）long，supracoxal seta $s c x$ slender，with $6-8$ pectinations， 27 （24－28）long． Ratios：vi：ve $=2.0(1.9-2.0)$ ，sci：$s c e=1.7(1.7-2.0)$ ，sci－ sci： sci－sce $=1.3(1.2-1.3)$ ．Lengths of setae：vi 72 （67－ 81），ve 36 （35－40），sci 152 （144－178），sce 87 （75－89）； distances：vi－vi 9 （9－12），vi－ve 30 （28－33），sci－sci 26 （25－27），sci－sce 20 （20－22）．Hysterosomal setae d_{l} about $3.0(3.0-3.2) \times$ length of c_{1} and $2.0(2.0-2.3) \times$ length of d_{2} ； d_{2} about $1.5(1.3-1.5) \times$ length of c_{i} ；lengths of setae：$c_{1} 22$ （21－24），$c_{2} 227$（211－230），$c_{p} 181$（172－181），$c_{3} 42$（40－ 45），$d_{1} 65$（62－77），$d_{2} 32$（27－33），$e_{1} 330$（328－341），e_{2} 230 （224－245），$f_{2} 330$（315－339），$h_{1} 362$（349－371），h_{2} 332 （327－345），$h_{3} 281$（275－289）；distances：$c_{1}-c_{1} 70$（67－ 74），$c_{1}-d_{1} 43$（39－45），$d_{1}-d_{1} 25$（24－27），d_{2}－gla 30 （28－ 31），$d_{1}-e_{1} 51$（48－55），$e_{1}-e_{1} 77$（68－80）．Venter．Shape of coxal plates I and II as in female．Setae la $1.0(0.9-1.0) \times$ length of coxal plate II， 34 （33－34）；3a 16 （16－18）；3b 3.8 （3．6－3．8）× length of $3 a, 61$（58－61）；$g 15$（14－16），4a 54 （54－61）．Aedeagus with two obvious curves，S－shaped， distal $2 / 5$ reversely curved，tapering from base to tip， internal diameter linear， 24 （23－25）long；lateral arms sup－ porting aedeagus turning outwards．Anal slit 53 （49－55） long，distance between anterior rim of anal slit and poste－ rior margin of aedeagus 27 （25－28）．Anal suckers about 19 （16－20）in diameter；anal discs 4 （3－4）in diameter，dis－ tances between right and left discs 33 （30－34）．Pseudanal setae $p s_{l}$ about $2.9(2.6-2.9) \times$ length of $p s_{2}, 168$（159－ 177）long，$p s_{2} 4.4$（4．4－4．9）\times length of $p s_{3}, 57$（55－69） long，$p s_{3} 13$（12－14）；ps $-p s_{2} 2.1(2.1-2.2) \times$ distance $p s_{1-}^{-}$ $p s_{l}, p s_{1}-p s_{1} 26$（25－27），$p s_{2}-p s_{2} 55$（54－58）．
Legs．Leg I． 158 （155－184）long；femur I 40 （39－43），$v F$ simple， 41 （38－42）long；genu I 29 （28－30），$\sigma^{\prime} 35$（33－38）， $\sigma^{\prime \prime} 22(21-24), I \sigma^{\prime}: \sigma^{\prime \prime}=1.6(1.5-1.6), c G 34(33-36), m G$

36 （33－38）；tibia I 25 （25－28），甲 101 （97－111），gT 31 （27－32），hT 30 （29－33）；tarsus I 67 （65－70）long， 20 （19－ 22 ）wide，ω_{1} cylindrical and slightly widened at apex， 16 （14－17）long，$\varepsilon 4$（3－4），$\omega_{2} 6$（5－7），$\omega_{3} 20$（19－22），dis－ tance between $a a$ and ω_{1} about 6 （6－9），aa 16 （15－20） long，ba 23 （20－24），wa 25 （24－30），ra 29 （27－30），la 20 （19－22），$d 30$（28－31），e 6 （6－7），f14（13－16），s 5 （5－5．5）， u and $v 4(4-5), p$ and $q 5(5-6)$ ，empodium 12 （12－14）， claw 12 （12－15）．Leg II． 157 （151－160）long；femur II 40 （38－41），vF 48 （46－48）；genu II 24 （23－24），$\sigma 17$（16－19）， $c G 28$（27－30），$m G 33$（31－34）；tibia II 22 （21－23），$\varphi 114$ （108－120），gT 23 （22－24），hT 31 （28－32）；tarsus II 66 （65－69）long， 20 （18－22）wide，ω cylindrical， 20 （19－21） long，ba 19 （18－20），wa 35 （33－39），ra 28 （26－29），la 21 （20－23），$d 28$（27－31），e 5 （5－5．5），f 14 （11－16），$s 5$（5－6）， u and $v 4$（4－5），p and $q 5$（5－6），empodium 14 （13－15）， claw 14 （12－15）．Leg III． 171 （167－176）long；femur III 32 （31－34）；genu III 27 （26－28），б 13 （13－15），nG 41 （39－41）；tibia III 23 （23－25），甲 137 （123－138），kT 37 （36－40）；tarsus III 73 （68－76）long， 16 （16－19）wide，w setiform， 32 （31－35）long，r setiform， 24 （23－25）long，d 28 （28－30），e 6 （5－6），f 22 （19－22），s 5 （5－5．5），u 4（4－5）， $v 5$（5－5．5），p and $q 3$（3－3．5），empodium 12 （11－14）， claw 11 （11－12）．Leg IV． 185 （180－188）long；femur IV 38 （37－40），wF 33 （31－34）；genu IV 30 （28－31）；tibia IV 27 （27－28），甲 140 （135－146），kT 34 （33－37）；tarsus IV 75 （69－75）long， 16 （15－17）wide，w and r situated at level between suckers，w setiform， 30 （29－33）long，r setiform， 18 （17－20）long，distances between basal rim of tarsus IV and proximal sucker $d 28$（27－29），between d and $e 17$（16－19），between e and $f 13$（13－15），ratio（a＋b）： $\mathrm{c}=3.5$（3．2－3．5），f27（27－29）long，$s 5$（4－5），$u 3$（3－4，v 5 （5－5．5），p and $q 3$（3－3．5），empodium 12 （12－14），claw 11 （11－14）．

Distribution．BASED ON MATERIAL EXAMINED： New Zealand：KE／ND，AK，WO，BP，HB，WI，WN／ NN，MC，SC，CO．Australia，France，Portugal．
BASED ON LITERATURE：Portugal（Fain \＆Fauvel 1993）．

Material examined．Holotype， 5 paratypes，and 239 non－ type specimens－see Appendix 1 for details of speci－ mens examined．

Habitat and host．PLANT OR PLANT PRODUCTS： apples，bark of apricot，bark of cherry，bark of nectarine， barley，bird－of－paradise flower，black currents，black cur－ rant stem，calyx of Granny Smith apple in sooty mould in store，capsicum，Coleophora tubes，cucumber leaves，foli－ age of cherry，galls ex Populus nigra var．italica，garlic， unsprayed fruit／leaf of grapefruit，hydrangea leaf，kiwi fruit， leaves of Nashi，lemons，mandarin，mummified apricot fruit， mummified loquat fruit，onions，passion fruit，persimmon，
pollinia of Cymbidium sp., roots of clover, shallots, strawberries, tree onion bulbs.

ANIMAL OR ANIMAL PRODUCTS: coccid scale on Buxus sp., dead eggs \& embryos of Miomantis caffra, dead larva of citrus borer in wood, dead larva of Stathmopoda, dead Rattus norvegicus, Disonycha and Agasicles beetles, dried milk powder, egg cluster of avondale spider, eggs of Ceroplastes destructor, honeybee, honeybee hive, nests of Exuneura concinnula, nest of sparrow, nest of Sturnus vulgaris, nest of swallow, nest of Vespula germanica, pallet and long scrapings, Rattus exulans.
Remarks. This species is similar to T. communis $\mathbf{s p}$. \mathbf{n}., T. putrescentiae (Schrank) and T. pacificus $\mathbf{s p}$. n. in having a pair of eyespots on prodorsal shield and a S-shaped aedeagus in male, but differs from them in supracoxal seta $s c x$ being slender, tapering from base to tip (Fig. 30); spermathecal duct being narrow (Fig. 25); ω_{1} on tarsus I is slender, slightly widened at apex (Fig. 26), ω on tarsus II slender, nearly cylindrical (Fig. 26). Its aedeagus (Fig. 30) is longer than that of T. communis (Fig. 8) and T. putrescentiae (Fig. 65), and shorter than that of T. pacificus (Fig. 136). The supracoxal seta scx of the majority of specimens collected from Australia and New Zealand is slightly thicker than that of specimens from Portugal.

Tyrophagus curvipenis has a very broad range of habitats and hosts as listed above. Crossing experiments were conducted using a population of T. curvipenis originating from a honey beehive inAuckland and the culture population of T. communis sp. n. from Bioforce Ltd in Pukekohe, Auckland. Copulating behaviour was observed but females of both species did not produce eggs, indicating that these two species are reproductively isolated (postmating isolation).

Tyrophagus longior(Gervais)

(Fig. 33-42, Plates 1C, 5C, 6C, 10C, 14C, 15C, 16C,
$20 \mathrm{C}, 21 \mathrm{C}, 25 \mathrm{E}, \mathrm{F}, 30 \mathrm{C}, 31 \mathrm{C}, 32 \mathrm{C}$)
Tyroglyphus longior Gervais, 1844: 262; Michael, 1903: 123. Tyrophagus longior (Gervais, 1844); Zakhvatkin, 1941: 109; Robertson, 1959: 165; Samšiòák, 1962: 271; Hughes, 1961: 42; Hughes, 1976: 57.
Acarus dimidiatus Hermann, 1804; suppressed by ICZN 1985: 124.

Tyrophagus tenuiclavus Zakhvatkin, 1941: 109; Hughes, 1948: 23; Volgin, 1949: 386; synonymy by Robertson, 1959: 165.
Diagnosis. Female. Eyespots absent; scx slender, tapering from base to tip, with $8-12$ short pectinations; d_{1} about $1.3(1.3-1.8) \times$ length of c_{1} and $1.5(1.5-1.9) \times$ length of $d_{2} ; d_{2}$ about $1.0(0.9-1.1) \times$ length of c_{1}; coxal plates I triangular not reaching to posterior apex of prosternal apodeme; coxal plates II triangular with posterior margin
slightly sinuous, distally not reaching apex of apodeme II. Spermathecal duct broad, widening gradually from midway to base of spermathecal sac, about $1.5(1.5-1.9) \times$ distance between sclerites of oviducts, base of spermathecal sac nearly flat or bending slightly backwards. Tarsus I ω_{1} and tarsus II ω slender, almost cylindrical but tapering slightly from base to apex; setae w and r of tarsus IV spiniform.
Male. Eyespots absent, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{l} about 1.4 (1.2-1.4) \times length of c_{1} and $1.6(1.4-1.6) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.8-0.9) \times$ length of c_{1}; aedeagus with one major curve, narrowing gradually in basal half, distal end straight or slightly reversely curved, internal diameter linear; lateral arms supporting aedeagus turning inwards; setae w and r of tarsus IV spiniform; ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=0.7(0.7-0.8)$.
Description. Female (Fig. 33-37, Plates 1C, 5C, 6C, 10C, 14C, 15C)
Idiosoma. 525 (525-541) long, 344 (344-347) wide. Chelicera 109 (109-112) long, cheliceral seta cha conical, 8 (8-10) long, subcapitular setae $m 40$ (40-44), palpal supracoxal seta elcp 15 (15-16) long, dorsal palptibial seta 32 (32-35), lateral palptibial seta 19 (19-20), dorsal palptarsal seta 15 (15-17), palptarsal solenidion 6 (5-6). Dorsum. Prodorsal shield nearly rectangular, its lateral edeges slightly concave and posterior edeges braodly round; 89 (89-92) long, 105 (105-116) wide between veve. Eyespots absent. Grandjean's organ finger-like and barbed, 20 (20-22), its basal lobe with 1 large trident and 2-3 small spiniform teeth. Supracoxal seta $s c x$ slender, tapering from base to tip, with 12 (8-12) short pectinations, 42 (42-45) long. Ratios: vi: ve $=1.7$, sci: sce $=2.1(1.9-2.1)$, sci-sci: $s c i-s c e=1.1$ (1.1-1.2). Lengths of setae: vi 107 (100-107), ve 62 (60-62), sci 248 (238248), sce 119 (119-128); distances: vi-vi 15 (15-16), vive 45 (45-49), sci-sci 40 (40-42), sci-sce 35 (35-37). Hysterosomal setae d_{1} typically not reaching to bases of e_{l}, about 1.3 (1.3-1.8)× length of c_{1} and 1.5 (1.5-1.9)× length of $d_{2} ; d_{2}$ about $1.0(0.9-1.1) \times$ length of c_{1}; lengths of setae: $c_{1} 45$ (45-50), $c_{2} 280(263-280), c_{p} 188$ (188196), $c_{3} 41$ (38-41), $d_{1} 67$ (67-88), $d_{2} 45$ (45-46), $e_{1} 421$ (413-421), $e_{2} 212$ (212-247), $f_{2} 427$ (427-433), $h_{1} 408$ (408-425), $h_{2} 433$ (433-446), $h_{3} 369$ (369-385); distances: $c_{1}-c_{1} 132$ (131-132), $c_{1}-d_{1} 82$ (72-82), $d_{1}-d_{1} 61$ (60-61), d_{2}-gla 50 (50-65), $d_{1}-e_{1} 87$ (87-90), $e_{1}-e_{1} 136$ (136146). Venter. Coxal plates I triangular not reaching to posterior apex of prosternal apodeme; coxal plates II triangular with posterior margin slightly sinuous, distally not reaching apex of apodeme II. Setae la $1.1(0.9-1.1)^{\times}$ length of coxal plate II, 60 (58-60), $3 a 33$ (31-33); $3 b 1.4$ (1.4-1.6) \times length of $3 a, 45$ (45-51); g 27 (27-30), 4a 77 (77-87). Pseudanal setae $p s_{l} 2.0(2.0-2.1) \times$ as long as
$p s_{2}, 258$ (258-289) long, $p s_{2} 4.3$ (4.3-4.5) \times length of $p s_{3}$, 129 (129-139) long, $p s_{3} 30$ (30-31). Adanal setae $\operatorname{ad}_{1} 31$ (31-38), $\operatorname{ad}_{2} 32$ (32-35), $\operatorname{ad}_{3} 25$ (22-25). Copulatory opening 5 (5-6) in diameter, spermathecal duct broad, widening gradually from midway to base of spermathecal sac, about $1.5(1.5-1.9) \times$ distance between sclerites of oviducts, base of spermathecal sac nearly flat or bending slightly backwards, distance between sclerites of oviducts 14.

Legs. Leg I. 253 (253-258) long; femur I 65 (65-67), $v F$ simple, 66 (65-66) long; genu I $50(49-50)$, $\sigma^{\prime} 72$ (72-75), $\sigma " 41$ (40-41), I σ ': $\sigma "=1.8$ (1.8-1.9), $c G 46$ (46-47), $m G$ 60 (59-60); tibia I 37 (35-37), 甲 139 (139-144), gT 43 (43-45), hT 42 (42-45); tarsus I 113 (109-113) long, 31 (30-31) wide, ω_{1} slender, almost cylindrical, 24 (22-25) long, $\varepsilon 7$ (6-8), $\omega_{2} 10$ (10-11), $\omega_{3} 32$ (32-33), distance between $a a$ and ω_{1} about 17 (16-17), aa 35 (35-36) long, ba 38 (36-38), wa 55 (55-67), ra 40 (40-41), la 31 (29$31), d 40(40-42)$, e $10(10-11), f 22(21-22), s 8(7-8), u$ and $v 8(7-8), p$ and $q 9(9-10)$, empodium 18 (16-18), claw 20 (20-22). Leg II. 261 (245-261) long; femur II 65 (59-65), $v F 76$ (76-86); genu II 41 (40-41), б 34 (34-37), $c G 43$ (41-43), $m G 53$ (53-60); tibia II 34 (33-34), $\varphi 158$ (153-158), gT 40 (40-43), hT 45 (45-52); tarsus II 110 (105-110) long, $30(29-30)$ wide, ω slender, nearly cylindrical, 25 (25-27) long, ba 38 (36-38), wa 56 (56-64), ra 38 (38-44), la 25 (25-32), d 39 (38-39), e 12 (10-12), f 24 (21-24), $s 8$ (7-8), u and $v 8$ (7-8), p and $q 9$ (9-10), empodium 17 (17-18), claw 24 (23-24). Leg III. 275 (255-275) long; femur III 52 (50-52); genu III 46 (4246), $\sigma 45$ (28-45), nG 75 (75-85); tibia III 37 (35-37), φ 155 (155-166), kT 77 (77-83); tarsus III 123 (121-123) long, 24 (21-24) wide, w setiform, 45 (45-46) long, r setiform, 46 (36-46) long, $d 45$ (39-45), e 10 (9-10), f25 (25-33), $s 8$ (7-8), u 7 (6-7), v 8 (7-8), p and $q 5$ (5-6), empodium 10, claw 14 (14-16). Leg IV. 312 (287-312) long; femur IV 55 (53-55), wF 63 (63-66); genu IV 57 (49-57); tibia IV 45 (42-45), $\varphi 127$ (127-143), kT 60 (60-67); tarsus IV 139 (138-139) long, 23 (22-23) wide, w spiniform, 59 (56-59) long, r spiniform, 23 (22-23) long, $d 43$ (39-43), e 9 (8-9), f30 (30-32), s 8 (7-8), u 7 (6-7), $v 8(7-8), p$ and $q 4(4-5)$, empodium 14 , claw 14 (14-15).
Male (Fig. 38-42, Plates 16C, 20C, 21C, 25E, F, 30C, 31C, 32C)
Idiosoma. 563 (408-563) long, 366 (217-366) wide. Chelicera 100 (81-109) long, cheliceral seta cha conical, 7 (67) long, subcapitular setae $m 40$ (36-40), palpal supracoxal seta elcp barbed, 14 (12-14) long, dorsal palptibial seta 31 (20-31), lateral palptibial seta 21 (14-21), dorsal palptarsal seta 19 (11-19), palptarsal solenidion 5 (4-5). Dorsum. Prodorsal shield as in female, 90 (65-90) long,

97 (82-97) wide between ve-ve. Eyespots absent. Grandjean's organ finger-shaped and sparsely barbed, basally with $4-6$ spiniform teeth, $14(13-14)$ long, supracoxal seta scx slender, 41 (29-41) long, with 8 (8$10)$ short pectinations. Ratios: $v i$: $v e=1.5(1.5-1.7)$, $s c i$: $s c e=2.2(1.5-2.2)$, sci-sci: $s c i-s c e=1.3$ (1.2-1.5). Lengths of setae: vi 111 (71-111), ve 72 (43-72), sci 286 (175286), sce 131 (77-147); distances: vi-vi 16 (12-16), vive 41 (35-41), sci-sci 43 (30-45), sci-sce 32 (25-32). Hysterosomal setae d_{1} about 1.4 (1.2-1.4) \times length of c_{1} and $1.6(1.4-1.6) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.8-0.9) \times$ length of c_{1}; lengths of setae: $c_{1} 45^{2}(34-45), c_{2} 258$ (205258), $c_{p} 191$ (131-191), $c_{3} 41$ (35-41), $d_{1} 62$ (42-62), d_{2} 40 (32-40), $e_{1} 362$ (302-362), $e_{2} 186$ (165-186), $f_{2} 438$ (326-438), $h_{1} 446$ (352-446), $h_{2} 491$ (438-491), $h_{3} 403$ (278-403); distances: $c_{1}-c_{1} 141$ (77-141), $c_{1}-d_{1} 67$ (49$67), d_{1}-d_{1} 62(37-62), d_{2}-g l a 54(35-57), d_{1}-e_{1} 85$ (5785), $e_{1}-e_{1} 151(91-151)$. Venter. Shape of coxal plates I and II as in female. Setae la $0.9(0.9-1.1) \times$ length of coxal plate II, 51 (39-56); 3a 31 (17-31); 3b 1.6 (1.6-2.3)× length of $3 a, 50$ (39-50); g 23 (17-23), 4a 78 (48-78). Aedeagus, with one major curve, 22 (21-23) long, narrowing gradually in basal half, distal end straight or slightly reversely curved, internal diameter linear; lateral arms supporting aedeagus turning inwards. Anal slit 92 (6192) long, distance between anterior rim of anal slit and posterior margin of aedeagus $9(9-15)$. Anal suckers about 32 (18-32) in diameter; anal discs 5 (4-5) in diameter, distances between right and left discs 35 (35-37). Pseudanal setae $p s_{1}$ about 4.6 (4.4-4.9)× length of $p s_{2}$, 235 (195-235) long, $p s_{2} 2.6$ (2.4-2.6)× length of $p s_{3}, 51$ (36-51) long, $p s_{3} 20$ (15-20); $p s_{2}-p s_{2} 1.1$ (0.9-1.1) \times distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 43$ (40-44), $p s_{2}-p s_{2} 47$ (43-48).
Legs. Leg I. 291 (183-291) long; femur I 57 (45-61), $v F$ simple, 67 (40-67) long; genu I 45 (30-45), σ ' 57 (49-57), $\sigma " 25(24-32), I \sigma \prime: \sigma "=2.3(1.6-2.3), c G 45(35-45), m G$ 42 (42-55); tibia I 36 (26-40), $\varphi 127$ (112-139), gT 42 (31-42), hT 45 (31-45); tarsus I 110 (78-110) long, 21 (17-25) wide, ω_{1} cylindrical, 18 (17-20) long, $\varepsilon 5$ (4-7), $\omega_{2} 8(6-8), \omega_{3} 35(24-35)$, distance between $a a$ and ω_{1} about 16 (12-16), aa 20 (18-25) long, ba 35 (21-35), wa 54 (31-54), ra 33 (24-33), la 21 (17-24), d 50 (26-50), e 10 (7-10), $f 20$ (15-21), $s 8$ (7-8), u and $v 8$ (7-8), p and $q 9$ (9-10), empodium 14 (10-14), claw 19 (14-19). Leg II. 250 (182-250) long; femur II 60 (44-62), vF 75 (5375); genu II 45 (32-45), $\sigma 25$ (22-25), $c G 47$ (30-47), $m G$ 52 (41-52); tibia II 32 (25-35), $\varphi 123$ (114-126), gT 40 (28-40), hT 42 (32-42); tarsus II 105 (74-105) long, 19 (16-23) wide, ω cylindrical, 26 (21-26) long, ba 34 (2331), wa 51 (35-56), ra 33 (27-41), la 30 (21-30), d 40 (30-40), e 10 (7-10),f20 (12-20), 77 (5-7), u and $v 6$ (5$6), p$ and $q 7(6-7)$, empodium $15(12-15)$, claw 19 (14-
19). Leg III. 267 (188-267) long; femur III 60 (37-60); genu III 40 (30-40), $\sigma 15$ (15-25), $n G 62$ (52-62); tibia III 30 (25-32), $\varphi 145$ (123-157), kT 57 (47-67); tarsus III 120 (88-120) long, 17 (15-18) wide, w setiform, 42 (3143) long, r setiform, 34 (23-38) long, $d 39$ (28-39), $e 10$ (7-10), $f 27$ (22-31), $s 7$ (6-7), $u 6$ (5-6), $v 7$ (6-7), p and $q 5(4-5)$, empodium 14 (9-14), claw 19 (14-19). Leg IV. 295 (215-295) long; femur IV 65 (35-65), wF 68 (4168); genu IV 50 (38-52); tibia IV 40 (30-40), $\varphi 107$ (99107), kT 65 (42-65); tarsus IV 131 (95-131) long, 16 (115-18) wide, w and r situated anteriorad of distal sucker, w spiniform, 36 (32-36) long, r spiniform, 18 (13-23) long, distances between basal rim of tarsus IV and proximal sucker $d 20$ (15-20), between d and $e 22$ (19-22), between e and $f 62$ (44-62), ratio (a+b): c $=0.7(0.7-0.8)$, $f 42$ (25-42) long, $s 7$ (6-7), $u 5$ (5-6), $v 7$ (6-7), p and q 4 (3-4), empodium 14 (14-15), claw 18 (13-18).
Distribution. BASED ON MATERIAL EXAMINED:
New Zealand: ND, AK, WO, TK, HB, WI, WN / NN, MB, MC, SC, CO, SL. Australia, Ecuador, Netherlands, Philippines, U.K., U.S.A.
BASED ON LITERATURE: Australia (Robertson 1959), Belgium (Bollaerts \& Breny 1951), Bulgaria (Angelkova 1982), Canada (Robertson 1959), Denmark (Robertson 1959), Egypt (Zakladnoi 2003), Faroe Islands (Hallas \& Solberg 1989), Finland (Leskinen \& Klen 1987), France (Reynaud et al. 1981), Germany (Robertson 1959), Greece (Papaioannou-Souliotis 1991), India (Mohanasundaram \& Parameswaran 1991), Ireland (Cusack et al. 1975), Italy (Robertson 1959), Netherlands (Robertson 1959), Indonesia (as New Guinea) (Oudemans 1906), New Zealand (Robertson 1959), Poland (Studzinski \& Malachowska 1975), Sweden (Bostrom et al. 1997), U.K. (Michael 1903; Hughes 1948; Griffiths 1979), Uruguay (Rimbaud 1983), U.S.A. (Baker et al. 1976).

Material examined. Neotype and 736 non-type specimens - see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: acorns of Quercus sp., avocadoes, banana, barley, barn dust, bulked wheat, coconut, combine harvester, cucumber, culms and panicles of wheat, cucumber leaves, Cymbidium, Dahlia, damaged peas, damaging cucumber leaves, fig leaves, garlic (Allium sativum L.), gladioli bulbs, grassland, grass seed, harvester, mallow leaves, mandarin, Musa sapientum, nectarine bark, nests of dipper (Cinclus cinclus aquaticus), onion, pomelo, ornamentals, rotting coconut, rotting mango, ryegrass seed, shallots, soyabean flour, stored apple, stored food products, stored grain, stored hay, stored pollen, strawberry, tamarillo, tomato chutney, weed, wheat.

ANIMAL OR ANIMAL PRODUCTS: bee frames,
bee hive, bee surveillance, bird nest, bird's nest in poplar tree, Bombus nests, cheese, cheese shelves, dead Prionoplus reticularis Lav., ham, hives of Apis cerana indica, A. mellifera, A. dorsata and A. florae, honey, house dust, human, litter in a densely populated urban area, nests of sea birds (Eudyptula minor albosignata and Pachyptila turtur), nest of Sturnus vulgaris, pallet and bag scrapings (dried milk powder), prosciutto in meat works, scrapieinfected sheep, shepherd, wedding cake.
Remarks. Tyrophagus longior has long been considered one of the important mite pests on cheese (Robertson 1961). The present definition of T. longior (Gervais) is established by Robertson (1959) based on the neotype male with another male on the slide labelled "Tyrophagus longior (Gerv., 1844), ơ dors., ex cheese, Gouda, Netherlands, 26.3.54, P.L.R. Coll. No. 237 (3, 4). Neotype".

Robertson (1959) listed synonyms of Tyrophagus longior (Gerv., 1844):
Tyroglyphus longior Gervais, 1844: 262; Fumouze \& Robin, 1867: 582; Nalepa, 1884: 226; Canestrini, 1888, 28; 1888, 405; Canestrini \& Kramer, 1899: 140; Banks, 1906: 14; Eales, 1918: 1088; André, 1933: 353.
Tyroglyphus dimidiatus; Oudemans, 1924: 269.
Tyroglyphus infestans Berlese, 1884 (unnumbered).
Tyroglyphus dimidiatus forma longior; Oudemans, 1924: 269.
Tyroglyphus dimidiatus forma dimidiatus; Oudemans, 1924: 269.

Tyrophagus dimidiatus forma humerosus; Oudemans, 1924: 269.

Tyroglyphus subgen. Tyrophagus dimidiatus; Oudemans, 1924:25.
Tyrophagus dimidiatus var. humerosus; Vitzthum, 1929: 75.
Tyrophagus dimidiatus var. longior; Vitzthum, 1929: 75.
Tyrophagus dimidiatus var. infestans; Vitzthum, 1929: 75.
Tyrophagus dimidiatus; Vitzthum, 1929: 75.
Tyrophagus longior; Hull, 1931: 40; Zakhvatkin, 1941: 109; Baker \& Wharton, 1952: 335; Robertson, 1959: 165.
Tyrophagus tenuiclavus Zakhvatkin, 1941: 109; Hughes, 1948: 23; Volgin, 1949: 386; Bollaerts \& Breny, 1951; synonymy by Robertson, 1959: 165.
Tyrophagus infestans (Berlese); Nesbitt, 1945: 155.
Coelognathus dimidiatus (Hermann); Turk, 1953: 81.
Coelognathus tenuiclavus (Zakhvatkin); Turk, 1953: 81.

Tyrophagus macfarlaneisp. n .

Fig. 43-47, Plates 1D, 5D, 6D, 10D, 14D, 15D
Diagnosis. Female. Eyespots absent; scx broadly widened medially where pectinations begin, with $18-20$ moderate or short pectinations; $d_{1} 3.7 \times$ length of c_{1} and $2.2 \times$ length of $d_{2} ; d_{2} 1.7 \times$ length of $c_{1} ;$ coxal plates I extending beyond posterior apex of prosternal apodeme; posterior margin of coxal plates II strongly concave along basal one third. Spermathecal duct narrowing gradually from copu-
latory opening for a distance about $3.8 \times$ distance between sclerites of oviducts and then forming a thin tube leading to base of spermathecal sac over a distance about $1.2 \times$ distance between sclerites of oviducts, base of spermathecal sac small and flat. Tarsus I ω_{1} and tarsus II ω stout, almost cylindrical; setae w and r of tarsus IV setiform.

Description. Female (Fig. 43-47, Plates 1D, 5D, 6D, 10D, 14D, 15D)
Idiosoma. 321 long, 187 wide. Chelicera 72 long, cheliceral seta cha conical with bifurcated tip, 5 long, subcapitular setae m 32, palpal supracoxal seta elcp slender, 16 long, dorsal palptibial seta 17, lateral palptibial seta 12, dorsal palptarsal seta 11, palptarsal solenidion 3. Dorsum. Prodorsal shield nearly pentagonal, its lateral margins strongly concave and posterolateral margins slightly concave; 60 long, 73 wide between ve-ve. Eyespots absent. Grandjean's organ finger-like (12), its basal lobe with 3 basally spiniform teeth. Supracoxal seta scx broadly widened at bases of pectinations, 18-20 moderate or short in number, 34 long. Ratios: $v i$: $v e=1.2$, sci-sci: $s c i-s c e=$ 1.5. Lengths of setae: $v i 59$, ve 48, sci lost, sce 86 ; distances: vi-vi 9, vi-ve 30, sci-sci 30, sci-sce 20. Hysterosomal setae d_{1} about $3.7 \times$ length of c_{1} and $2.2 \times$ length of $d_{2} ; d_{2} 1.7 \times$ length of c_{1}; lengths of setae: $c_{1} 27, c_{2}$ $153, c_{p} 107, c_{3} 30, d_{1} 101, d_{2} 46, e_{1} 268, e_{2}>147, f_{2} 254, h_{1}$ 337, $h_{2} 319, h_{3} 242$; distances: $c_{1}-c_{1} 92, c_{1}-d_{1} 30, d_{1}-d_{1}$ $41, d_{2}-$ gla $39, d_{1}-e_{1} 73, e_{1}-e_{1} 85$. Venter. Coxal plates I extending beyond posterior apex of prosternal apodeme; posterior margin of coxal plates II strongly concave along basal one-third. Setae $1 a 1.2 \times$ length of coxal plate II, 41 , $3 a 27 ; 3 b 1.3 \times$ length of $3 a, 35 ; g 21,4 a 50$. Pseudanal setae $p s_{1} 1.9 \times$ as long as $p s_{2}, 196$ long, $p s_{2} 4.5 \times$ length of $p s_{3}, 104$ long, $p s_{3} 23$. Adanal setae $a d_{1} 22, a d_{2} 19, a d_{3} 20$. Copulatory opening 5 in diameter, spermathecal duct narrowing gradually from copulatory opening for a distance about $3.8 \times$ distance between sclerites of oviducts, then narrowing abruptly and leading to base of spermathecal sac over a distance about $1.2 \times$ distance between sclerites of oviducts, base of spermathecal sac small and flat, distance between sclerites of oviducts 6 .
Legs. Leg I. 170 long; femur I 40, $v F$ simple, 44 long; genu I 31, $\sigma^{\prime} 30, \sigma^{\prime \prime} 30$, I $\sigma^{\prime}: \sigma^{\prime \prime}=1.0, c G 25, m G 32$; tibia I 25, $\varphi 123, g T 23, h T 27$; tarsus I 67 long, 13 wide, ω_{1} stout, almost cylindrical, 12 long, $\varepsilon 3, \omega_{2} 5, \omega_{3} 17$, distance between $a a$ and ω_{1} about 9 , aa 10 long, ba 16, wa 32, ra 25, la 18, d 16, e 7, $f 10, s 4.5, u$ and $v 3, p$ and q 5.5, empodium 13, claw 10. Leg II. 152 long; femur II 39, $v F$ 42; genu II 27, $\sigma 14, c G 17, m G 26$; tibia II 22, $\varphi 118, g T$ $23, h T 27$; tarsus II 62 long, 13 wide, ω stout, nearly cylindrical, 16 long, ba 20, wa setiform, 27 long, ra setiform, 23 long, la 20, $d 15, e 7, f 10, s 4.5, u$ and $v 3, p$
and q 5.5, empodium 13, claw 10. Leg III. 157 long; femur III 33; genu III 26, $\sigma 12$, 35 ; tibia III $24, \varphi 109, k T$ 30; tarsus III 66 long, 12 wide, $w 25, r 19, d 11, e 6, f 10$, $s 4.5, u 3, v 4, p$ and $q 3.5$, empodium 12, claw 10. Leg IV. 184 long; femur IV 38, wF 39; genu IV 30; tibia IV 28, φ $114, k T 36$; tarsus IV 76 long, 11 wide, w setiform, 23 long, r setiform, 20 long, $d 14, e 6, f 13, s 4.5, u 3, v 4, p$ and $q 3.5$, empodium 13, claw 10 .
Male. Unknown.
Distribution. New Zealand.
Material examined. Holotype.
Type material. Holotype female: NEW ZEALAND: Intercepted in Queensland, Australia: 1/1 female (Q22444), 16 May 2001, collector unknown, carrots, NZAC.
Habitat and host. Carrot.
Etymology. This species is named in honour of Bob Macfarlane, Biosecurity New Zealand, who recognises and appreciates the importance of taxonomy to biosecurity
Remarks. Tyrophagus macfarlanei and T. tropicus Robertson, 1959 differ from all other species in having long d_{2} and slender elcp. Tyrophagus macfarlanei resembles T. tropicus in lacking eyespots, scx being broadly widened and densely pectinated, but differs from the latter in seta $a d_{1}$ nearly as long as $p s_{3}$ (Fig. 46) rather than prominently long (more than $2 \times$ length of $p s_{3}$, Fig. 151), and the structure of spermathecal duct (Fig. 45, 152).

Tyrophagus neiswanderi Johnston \& Bruce

Fig. 48-57, Plates 2A, 5E, 7A, 11A, 14E, 15E, 16D, 20D, 21D, 26A, B, 30D, 31D, 32D
Tyrophagus neiswanderi Johnston \& Bruce, 1965: 3; Hughes, 1976: 59; Nakao \& Kurosa, 1988: 139.
Tyrophagus africanus Meyer \& Rodrigues, 1966: 26; syn. n.
Diagnosis. Female. Eyespots prominent; scx shaft widened at point where pectinations begin, with $8-11$ moderate or short pectinations; d_{1} about $1.6(1.5-1.8) \times$ length of c_{1} and $1.7(1.6-1.9) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-$ $1.0) \times$ length of c_{l}; coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II narrowing sharply along its distal $3 / 5$, then becoming contiguous with apex of apodeme II, with $2 / 3$ posterior margin strongly concave. Spermathecal duct narrowing gradually from copulatory opening to base of spermathecal sac, about 2.6 $(2.5-3.2) \times$ distance between sclerites of oviducts, base of spermathecal sac triangular, funnel-shaped. Tarsus I ω_{1} and tarsus II ω slender, almost cylindrical; setae w and r of tarsus IV setiform.
Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II
ω as in female; d_{1} about $1.5(1.5-1.9) \times$ length of c_{1} and 1.3 $(1.3-1.5) \times$ length of $d_{2} ; d_{2}$ about $1.1(1.1-1.2) \times$ length of c_{1}; aedeagus with one major curve, distal end almost straight, tapering from base to tip, internal diameter linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=1.8$.
Description. Female (Fig. 48-52, Plates 2A, 5E, 7A, $11 \mathrm{~A}, 14 \mathrm{E}, 15 \mathrm{E}$)
Idiosoma. 493 (482-535) long, 327 (304-331) wide. Chelicera 107 (105-110) long, cheliceral seta cha conical, 6 (6-7) long, subcapitular setae $m 47$ (43-52), palpal supracoxal seta elcp $11(10-12)$ long, dorsal palptibial seta 23 (20-27), lateral palptibial seta 17 (15-17), dorsal palptarsal seta 11 (11-13), palptarsal solenidion 4 (4-5).
Dorsum. Prodorsal shield nearly pentagonal, its lateral margins slightly concave and posterolateral margins strongly concave; 89 (87-90) long, 102 (101-105) wide between ve-ve. Eyespots present, prominent. Grandjean's organ finger-like, its basal lobe with 2 basally confluent and 1 separate spiniform teeth. Supracoxal seta scx widened at bases of pectinations, with $8(8-11)$ moderate or short pectinations, $31(30-32)$ long. Ratios: $v i: v e=1.5$ (1.7-1.8), sci: $s c e=2.1$ (2.1-2.3), sci-sci: $s c i-s c e=1.5$ (1.4-1.5). Lengths of setae: vi 87 (87-110), ve 57 (5163), sci 223 (221-228), sce 108 (101-122); distances: vivi 15 (14-17), vi-ve 55 (43-56), sci-sci 45 (40-50), scisce 30 (29-32). Hysterosomal setae d_{1} about 1.6 (1.5$1.8) \times$ length of c_{1} and $1.7(1.6-1.9) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-1.0) \times$ length of c_{1}; lengths of setae: $c_{1} 54$ (4558), $c_{2} 245(240-251), c_{p} 185(183-192), c_{3} 45(43-47)$, $d_{1} 87$ (77-90), $d_{2} 51$ (43-54), $e_{1} 375$ (349-405), $e_{2} 274$ (262-284), $f_{2} 365$ (308-373), h 419 (404-449), h 411 (392-423), $h_{3} 318(300-318)$; distances: $c_{1}-c_{1} 116$ (115118), $c_{1}-d_{1} 69(69-85), d_{1}-d_{1} 48(48-55), d_{2}-$ gla 62 (60$65), d_{1}-e_{1} 105$ (98-121), $e_{1}-e_{1} 118$ (111-128). Venter. Coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II narrowing sharply along its distal $3 / 5$, then becoming contiguous with apex of apodeme II, with $2 / 3$ posterior margin strongly concave. Setae la 1.1 (1.1-1.2) \times length of coxal plate II, 65 (56-65) long, $3 a 25$ (25-29); $3 b 3.9$ (3.3-3.9) \times length of $3 a, 97$ (90-97) long; g 22 (22-24), 4a 101 (99-107). Pseudanal setae $p s_{1} 1.6$ $(1.6-2.0) \times$ as long as $p s_{2}, 232$ (232-238) long, $p s_{2} 6.6$ (5.6-6.6) \times length of $p s_{3}, 145(118-170)$ long, $p s_{3} 22(20-$ 26). Adanal setae $a d_{1} 20$ (17-23), $a d_{2} 20$ (15-22), $a d_{3} 16$ (13-18). Copulatory opening 4 (4-5) in diameter, spermathecal duct narrowing gradually from copulatory opening to base of spermathecal sac, about $2.6(2.5-3.2) \times$ distance between sclerites of oviducts, base of spermathecal sac triangular, funnel-shaped, distance between sclerites of oviducts 23 (18-25).
Legs. Leg I. 247 (231-262) long; femur I 64 (63-66), $v F$
simple, 54 (53-68) long; genu I 43 (42-44), $\sigma^{\prime} 43$ (42-46), $\sigma " 28$ (26-29), I σ ': $\sigma "=1.5$ (1.5-1.6), $c G 47$ (45-50), $m G$ 60 (57-62); tibia I 36 (35-38), $\varphi 134$ (124-141), gT 44 (40-48), hT 48 (44-51); tarsus I 98 (95-100) long, 24 (23-25) wide, ω_{1} slender, almost cylindrical, 20 (19-22) long, $\varepsilon 4$ (4-5), $\omega_{2} 7$ (6-7), $\omega_{3} 30$ (27-37), distance between $a a$ and ω_{1} about $14(13-16)$, aa 30 (28-32) long, ba 29 (26-31), wa 55 (52-59), ra 39 (33-41), la 28 (22-30), $d 36(29-43), e 8(7-9), f 16(14-19), s 7(6-7), u$ and $v 5$ (4-5), p and $q 7$ (6-7), empodium $20(18-21)$, claw 16 (14-17). Leg II. 232 (227-245) long; femur II 61 (6064), $v F 68$ (65-70); genu II 45 (44-46), б 27 (26-29), $c G$ 42 (42-48), $m G 48$ (46-50); tibia II 28 (28-33), $\varphi 154$ (137-176), gT 42 (41-44), $h T 48$ (47-53); tarsus II 91 (89-92) long, 22 (20-25) wide, ω slender, nearly cylindrical, 22 (22-24) long, ba 31 (29-32), wa 52 (51-54), ra 34 (33-43), la 25 (23-28), d 35 (31-42), e 7 (6-9), f 15 (1418), $s 7$ (6-7), u and $v 5$ (4-5), p and $q 7(6-7)$, empodium 20, claw 16 (14-16). Leg III. 237 (231-257) long; femur III 52 (51-53); genu III 40 (39-42), б 25 (25-26), nG 60 (56-64); tibia III 37 (36-38), 甲 154 (138-182), kT 55 (51-65); tarsus III 100 (97-102) long, 16 (15-16) wide, w 53 (50-56), r 36 (34-38), d 35 (31-40), e 7 (6-7), f 19 (15-22), 7 (6-7), $u 4$ (4-4.5), $v 7$ (6-7), p and $q 5$ (4-5), empodium 18 (15-20), claw 15 (13-16). Leg IV. 271 (264-284) long; femur IV 53 (51-56), wF 55 (50-61); genu IV 49 (48-50); tibia IV 50 (50-51), 甲 133 (126$141), k T 55$ (50-56); tarsus IV 106 (101-107) long, 16 (15-19) wide, w setiform, 47 (40-50) long, r setiform, 27 (25-28) long, $d 30$ (25-34), e 7 (7-9), f21 (20-24), s 7 (67), $u 4$ (4-4.5), v 7 (6-7), p and $q 5$ (4-5), empodium 18 (15-18), claw 14 (13-15).
Male (Fig. 53-57, Plates 16D, 20D, 21D, 26A, B, 30D, 31D, 32D)
Idiosoma. 397 (397-425) long, 242 (242-275) wide. Chelicera 80 (80-85) long, cheliceral seta cha conical with a blunt tip, 6 (5-6) long, subcapitular setae $m 36$ (34-36), palpal supracoxal seta elcp 11 (11-12) long, dorsal palptibial seta 23 (20-23), lateral palptibial seta 13 (1315), dorsal palptarsal seta $10(10-11)$, palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield as in female, 70 (7081) long, 82 (82-90) wide between ve-ve. Eyespots prominent. Grandjean's organ as in female, 13 (12-13) long; supracoxal seta scx 23 (23-26) long. Ratios: vi: ve $=1.8$ (1.8-1.9), sci: $s c e=1.6$ (1.6-1.7), sci-sci: $s c i-s c e=1.5$ (1.4-1.5). Lengths of setae: vi 85 (85-110), ve 48 (4857), sci 178 (172-178), sce 108 (99-108); distances: vi-vi 11 (11-12), vi-ve 35 (35-37), sci-sci 32 (32-36), sci-sce 21 (21-25). Hysterosomal setae d_{1} about 1.5 (1.5-1.9)× length of c_{1} and $1.3(1.3-1.5) \times$ length of $d_{2} ; d_{2}$ about 1.1 (1.1-1.2) \times length of c_{1}; lengths of setae: $c_{1} 29(29-42), c_{2}$ 234 (234-250), $c_{p} 148(148-187), c_{3} 30(30-50), d_{1} 43$
(43-79), $d_{2} 32(32-51), e_{1} 320(320-342), e_{2} 221$ (221251), $f_{2} 240$ (240-362), h 342 (342-389), h 355 (355387), $h_{3} 333$ (270-333); distances: $c_{1}-c_{1} 92$ (92-107), $c_{1}-$ $d_{1} 45(45-60), d_{1}-d_{1} 44(44-45), d_{2}-$ gla $42(42-47), d_{1}-e_{1}$ 70 (70-79), $e_{1}-e_{1} 95$ (95-107). Venter. Shape of coxal plates I and II as in female. Setae $1 a 1.1(1.0-1.1) \times$ length of coxal plate II, 48 (48-50); 3a 24 (24-26); $3 b 3.4 \times$ length of $3 a, 82$ (82-90); g 21 (21-27), 4a 88 (88-100). Aedeagus with one major curve, distal end almost straight, 16 (16-20) long, tapering from base to tip, internal diameter linear; lateral arms supporting aedeagus turning outwards. Anal slit $62(62-70)$ long, distance between anterior rim of anal slit and posterior margin of aedeagus 19 (15-19). Anal suckers about 21 (21-23) in diameter; anal discs $4(3-5)$ in diameter, distances between right and left discs 32 (17-32). Pseudanal setae $p s_{1}$ about 2.3 (1.8$2.3) \times$ length of $p s_{2}, 251$ (225-251) long, $p s_{2} 6.8$ (6.86.9) \times length of $p s_{3}, 108$ (108-125) long, $p s_{3} 16$ (16-18); $p s_{2}-p s_{2} 2.0 \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 30(30-32), p s_{2}-$ $p s_{2} 59$ (59-63).
Legs. Leg I. 201 (201-222) long; femur I 51 (51-53), $v F$ simple, 47 (47-52) long; genu I 36 (36-37), σ ' 46 (45-46), $\sigma " 27$ (22-27), I $\sigma^{\prime}: \sigma^{\prime \prime}=1.7$ (1.7-2.0), $c G 37$ (37-46), $m G$ 44 (44-50); tibia I 30 (30-33), $\varphi 112$ (112-116), gT 34 (34-36), hT 38 (38-41); tarsus I 77 (77-88) long, 20 (1920) wide, shape of ω_{1} as in female, 17 (16-17) long, $\varepsilon 4$ (4-4.5), $\omega_{2} 6(6-6.5), \omega_{3} 26(26-28)$, distance between $a a$ and ω_{1} about 13 (13-14), aa 17 (17-21) long, ba 28 (2832), wa 41 (41-50), ra 31 (31-35), la 24 (22-24), d 24 (24-35), e $8(7-8), f 15(13-15), s 6$ (6-6.5), u and $v 4$ (45), p and $q 6(6-7)$, empodium 14 (14-18), claw 15 (1316). Leg II. 167 (167-189) long; femur II 46 (46-53), $v F$ 57 (57-70); genu II 37 (37-42), $\sigma 21$ (21-25), cG 26 (2640), $m G 39$ (39-50); tibia II 26 (26-41), $\varphi 127$ (125-127), gT 31 (31-40), hT 36 (36-51); tarsus II 71 (71-82) long, 16 (16-19) wide, ω as in female, 17 (17-18) long, ba 25 (20-25), wa 37 (37-44), ra 31 (31-36), la 23 (22-25), d 23 (23-35), e 7 (6-7), f17(17-20), $s 6$ (6-6.5), u and $v 4$ (4-5), p and $q 6$ (6-7), empodium 14 (13-19), claw 16 (13-16). Leg III. 174 (174-201) long; femur III 40 (4042); genu III 32 (32-35), $\sigma 17$ (17-25), nG 44 (44-52); tibia III 28 (28-33), $\varphi 138$ (127-138), kT 44 (44-52); tarsus III 77 (77-90) long, 14 (14-15) wide, w 34 (3436), $r 27$ (25-27), $d 28$ (28-29), e 7 (6-7), f26 (14-26), s 6 (5-6), $u 4, v 6(5-6), p$ and $q 4$ (3-4), empodium 15 (1519), claw 15 (12-16). Leg IV. 209 (209-225) long; femur IV 42 (42-53), wF 43 (43-50); genu IV 36 (36-37); tibia IV 31 (31-37), $\varphi 116$ (115-116), kT 46 (46-50); tarsus IV 83 (83-100) long, 13 (13-15) wide, w and r situated at level between suckers and close to distal sucker, w setiform, 32 (32-39) long, r setiform, 20 (20-21) long, distances between basal rim of tarsus IV and proximal
sucker $d 22(22-25)$, between d and $e 20(20-25)$, between e and $f 24(24-28)$, ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=1.8, f 26(17-26)$ long, $s 6$ (6-6.5), $u 4$ (4-4.5), v 6 (6-7), p and $q 3$ (3-4), empodium 13 (13-20), claw 14 (13-16).

Distribution. BASED ON MATERIAL EXAMINED: New Zealand: ND, AK, BP, TK, WI / MC. Australia, Germany, Netherlands, South Africa, U.K., U.S.A.

BASED ON LITERATURE: China (Teng et al. 1988), Japan (Nakao \& Kurosa 1988), Mexico (EstebanesGonzalez 1997), New Zealand (Martin \& Workman 1985), Poland (Czaikowska et al. 1988), South Africa (Meyer \& Rodrigues 1966), Switzerland (Fischer 1993), U.K. (Griffiths 1979). U.S.A. (Johnston \& Bruce 1965).
Material examined. Two paratypes and 388 non-type specimens - see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: bud on gooseberry culture, bulbs (Amaryllidaceae) vallarta, bulbs of Amaryllis hippeastrum, capsicum (Capsicum frutescens) in glasshouse, corn, cucumber, cucumber fruits, cucumber in greenhouse, Cymbidium orchid flower buds \& leaves, Cymbidium pollen caps, diseased onions, Epiphyllum sp., flower bulbs, garlic, Geranium, grape leaves with galls, Hibiscus sp., lemon, miniature cymbidium orchid, Narcissus bulbs, onion, orange, orchid flower, orchid house floor, orchid pots, Pepino (Solanum muricatum), Phalaenopsis orchid flower buds, plant material, Prunus leaves, scale culture room, soil and plant material, grape vines, tomato in green house, Zantedeschia bulbs.

ANIMAL OR ANIMAL PRODUCTS: respiratory tract of human, short tailed bat.
Remarks. Re-examination of the holotype, allotype, and paratypes of T. africanus Meyer \& Rodrigues (Acy 65/26 in ARC-PPRI) reveals that T. africanus is conspecific with T. neiswanderi. According to the Principle of Priority (Article 23) of International Code of Zoological Nomenclature we regard T. africanus as a junior synonym of T. neiswanderi.

It seems that T. neiswanderi is mostly associated with plants and their products. Indeed at its type locality (Ohio, USA), it is found infesting glasshouse cucumbers (Johnston \& Bruce, 1965), and Griffiths (pers. com.) observed a number of cases in commercial cucumber crops in the UK where he identified T. nieswanderi as the causative agent of serious damage to developing heads. The record of this species on short tailed bat may be explained by a hypothesis that this species uses the bat as a tool for dispersal.

Tyrophagus putrescentiae(Schrank)

Fig. 58-67, Plates 2B, 5F, 7B, 11B, 14F, 15F, 17A, 20E, $22 \mathrm{~A}, 26 \mathrm{C}, \mathrm{D}, 30 \mathrm{E}, 31 \mathrm{E}, 33 \mathrm{~A}$
Acarus putrescentiae Schrank, 1781: 521.
Tyroglyphus (Tyrophagus) putrescentiae; Oudemans, 1924a: 250.

Diagnosis. Female. Eyespots present; $s c x$ widened at bases of pectinations, long and numbering $10-14 ; d_{1}$ about $2.1(2.1-2.8) \times$ length of c_{1} and $2.4(2.4-3.3) \times$ length of d_{2}; d_{2} about $0.9(0.8-0.9) \times$ length of c_{l}; coxal plates I just beyond apex of prosternal apodeme; coxal plates II with sinuous posterior border, narrowing sharply medially, becoming consitguous with apex of its apodeme. Spermathecal duct narrowing rapidly from copulatory opening for a distance about $0.6(0.5-1.3) \times$ diameter of distance between sclerites of oviducts and then gradually widening to base of spermathecal sac over a distance about $2.2(1.9-2.2) \times$ distance between sclerites of oviducts, base of spermathecal sac flat. Distal $2 / 3 \omega_{1}$ obviously widening, tarsus II ω slightly widening at apex; setae w and r of tarsus IV setiform.

Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about $2.0(2.0-2.2) \times$ length of c_{1} and 1.9 $(1.9-2.2) \times$ length of $d_{2} ; d_{2}$ about $1.0(1.0-1.1) \times$ length of c_{1}; aedeagus with two obvious curves, S-shaped, distal $1 / 3$ reversely curved, tapering from base to tip, internal diameter linear; lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio (a+b): $\mathrm{c}=$ 1.8.

Description. Female (Fig. 58-62, Plates 2B, 5F, 7B, 11B, 14F, 15F)
Idiosoma. 492 (486-492) long, 314 (314-319) wide. Chelicera 94 (92-94) long, cheliceral seta cha conical, 6 (5-6) long, subcapitular setae $m 35$ (35-39), palpal supracoxal seta elcp 14 (13-14) long, dorsal palptibial seta 25 (2325), lateral palptibial seta 17 (15-17), dorsal palptarsal seta 12 (11-13), palptarsal solenidion 4 (4-5). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins slightly concave; 83 (81-83) long, 95 (84-95) wide between $v e-v e$. Eyespots present. Grandjean's organ fingerlike, 15 (13-15), its basal lobe with $1-2$ large and 2 small spiniform teeth. Supracoxal seta scx widened at bases of pectinations, with $12(10-14)$ long or short pectinations, 31 (31-33) long. Ratios: $v i$: ve $=1.6$ (1.6-2.0), sci: sce $=$ 1.8 (1.4-1.8), sci-sci: $s c i-s c e=1.2$ (1.2-1.4). Lengths of setae: vi 117 (98-117), ve 60 (60-62), sci 185 (185-210), sce 137 (116-137); distances: vi-vi 15 (13-15), vi-ve 40 (39-40), sci-sci 42 (36-42), sci-sce 33 (29-33). Hysterosomal setae d_{1} about $2.1(2.1-2.8) \times$ length of c_{1} and $2.4(2.4-3.3) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.8-0.9) \times$ length of c_{1}; lengths of setae: $c_{1} 50(50-51), c_{2} 261$ (247-
261), $c_{p} 177$ (177-181), $c_{3} 47$ (47-49), $d_{1} 107$ (107-141), $d_{2} 45(43-45), e_{1} 333(319-333), e_{2} 276(276-286), f_{2} 337$ (337-391), h, 392 (384-392), $h_{2} 370$ (370-373), $h_{3} 314$ (314-319); distances: $c_{1}-c_{1} 117(117-119), c_{1}-d_{1} 76(75-$ $76), d_{1}-d_{1} 51$ (50-51), $d_{2}-$ gla 51 (48-51), $d_{1}-e_{1} 94$ (9094), $e_{1}-e_{1} 119$ (115-119). Venter. Coxal plates I extending postero-medially slightly beyond apex of prosternal apodeme; coxal plates II with sinuous posterior border, narrowing sharply medially, becoming consitguous with apex of its apodeme. Setae $1 a 1.1 \times$ length of coxal plate II, $58(51-58), 3 a 33(31-33) ; 3 b 2.6(2.6-2.7) \times$ length of $3 a, 85$ (83-85); g 30 (29-30), 4a 108 (97-108). Pseudanal setae $p s_{1} 1.5 \times$ as long as $p s_{2}, 252(250-252)$ long, $p s_{2} 6.8 \times$ length of $p s_{3}, 168$ (168-170) long, $p s_{3} 25$ (24-25). Adanal setae $a d_{1} 21$ (18-21), $a d_{2} 18(17-18), a d_{3} 14$ (14-17). Copulatory opening 5 in diameter, spermathecal duct narrowing rapidly from copulatory opening for a distance about $0.6(0.5-1.3) \times$ diameter of distance between sclerites of oviducts and then gradually widening to base of spermathecal sac over a distance about $2.2(1.9-2.2) \times$ distance between sclerites of oviducts, base of spermathecal sac flat, distance between sclerites of oviducts 16 (16-20).
Legs. Leg I. 222 (220-222) long; femur I 56 (56-58), $v F$ simple, 54 (54-56) long; genu I 34 (34-41), σ ' 57 (52-57), $\sigma " 26$ (25-26), I $\sigma^{\prime}: \sigma^{\prime \prime}=2.2, c G 46$ (45-46), $m G 57$ (5760); tibia I 31 (29-31), $\varphi 115$ (110-115), gT 45 (44-45), $h T 49$ (45-49); tarsus I 89 (89-91) long, 21 (19-21) wide, distal $2 / 3 \omega_{1}$ widening, 21 (20-21) long, $\varepsilon 5$ (4-5), $\omega_{2} 7$ (78), $\omega_{3} 23$ (23-25), distance between $a a$ and ω_{1} about 16 (14-16), aa 24 (22-24) long, ba 28 (27-28), wa 50 (4850), ra 28 (28-35), la 32 (24-32), d 31 (31-36), e 8 (7-8), $f 15$ (14-15), $s 5$ (5-6), u and $v 4$ (4-4.5), p and $q 7$ (77.5), empodium 15 (14-15), claw 14 (14-15). Leg II. 206 (200-206) long; femur II 50 (49-50), $v F 60$ (60-68); genu II 38 (38-40), $\sigma 22$ (18-22), cG 35 (35-36), $m G 53$ (5053); tibia II 28 (28-30), $\varphi 125$ (120-125), gT 41 (41-43), $h T 47$ (47-49); tarsus II 88 (85-88) long, 19 (17-19) wide, ω slightly widening at apex, 22 (22-23) long, ba 28 (26-28), wa 44 (42-44), ra 31 (31-36), la 25 (23-25), d 34 (34-40), e 7 (6-7), f16(14-16), $s 5$ (5-6), u and $v 4$ (44.5), p and $q 6$ (6-7), empodium 14, claw 13 (12-13). Leg III. 225 (220-225) long; femur III 44 (43-44); genu III 34 (33-34), $\sigma 23$ (23-26), $n G 62$ (62-65); tibia III 29 (2931), $\varphi 139$ (128-139), kT 59 (59-61); tarsus III 92 (9295) long, 15 (13-15) wide, w setiform, 34 (34-35) long, r setiform, 32 (32-35) long, $d 27$ (26-27), e 6 (6-7), f 26 (24-26), s 5 (5-5.5), u 4,v 5 (5-6), p and $q 3$ (3-3.5), empodium 13 (12-13), claw 12 (11-12). Leg IV. 259 (259-262) long; femur IV 51 (49-51), wF 48 (48-52); genu IV 44 (44-47); tibia IV 35 (33-35), 甲 123 (118123), kT 54 (52-54); tarsus IV 106 (104-106) long, 15
(13-15) wide, w setiform, 37 (35-37) long, r setiform, 28 (27-28) long, $d 34$ (27-34), e 5(5-6), f29 (25-29), s 5 (56), $u 4, v 5$ (5-6), p and $q 3$ (3-3.5), empodium 15 (1315), claw 12 (11-12).

Male (Fig. 63-67, Plates 17A, 20E, 22A, 26C, D, 30E, 31E, 33A)
Idiosoma. 378 (302-446) long, 233 (171-281) wide. Chelicera 75 (73-81) long, cheliceral seta cha conical, 4.5 (45) long, subcapitular setae $m 29$ (26-29), palpal supracoxal seta elcp 12 (8-12) long, dorsal palptibial seta 22 (1922), lateral palptibial seta 13 (8-14), dorsal palptarsal seta 8 (8-10), palptarsal solenidion 3 (3-4). Dorsum. Prodorsal shield as in female, 67 (67-74) long, 77 (68-77) wide between ve-ve. Eyespots present. Grandjean's organ finger shaped, basally with $1-4$ spiniform teeth, 14 (13-14) long, supracoxal seta $s c x$ widened in basal $1 / 3$, with 11 (11-12) moderate or short pectinations, 28 (2428) long. Ratios: $v i$: $v e=1.8(1.8-2.3)$, sci: $s c e=1.9(1.7-$ 1.9), sci-sci: $s c i-s c e=1.4$ (1.2-1.4). Lengths of setae: $v i$ 81 (81-104), ve 45 (44-46), sci 172 (172-190), sce 89 (89-105); distances: vi-vi 12 (9-12), vi-ve 33 (33-35), sci-sci 32 (26-32), sci-sce 23 (18-27). Hysterosomal setae d_{1} about $2.0(2.0-2.2) \times$ length of c_{1} and 1.9 (1.9$2.2) \times$ length of $d_{2} ; d_{2}$ about $1.0(1.0-1.1) \times$ length of c_{1}; lengths of setae: $c_{1} 32(30-40), c_{2} 191$ (191-197), $c_{p} 142$ (141-151), $c_{3} 35(34-42), d_{1} 63(63-87), d_{2} 34(32-40), e_{1}$ 328 (301-328), $e_{2} 213$ (206-213), $f_{2} 317$ (291-317), h_{1} 325 (325-331), h2 309 (281-309), $h_{3} 232$ (223-232); distances: $c_{1}-c_{1} 95(84-120), c_{1}-d_{1} 57$ (40-63), $d_{1}-d_{1} 37$ (33-54), $d_{2}-$ gla 49 (49-60), $d_{1}-e_{1} 77$ (64-90), $e_{1}-e_{1} 81$ (76-113). Venter. Shape of coxal plates I and II as in female. Setae la $1.1(0.8-1.1) \times$ length of coxal plate II, 46 (33-46); 3a 26 (23-26); $3 b 2.3(2.3-2.7) \times$ length of $3 a, 61$ (52-63); g 21 (19-21), 4a 83 (40-48). Aedeagus with two obvious curves, S-shaped, distal $1 / 3$ reversely curved, tapering from base to tip, internal diameter linear, 18 (1618) long; lateral arms supporting aedeagus turning outwards. Anal slit 67 (67-70) long, distance between anterior rim of anal slit and posterior margin of aedeagus 16 (16-22). Anal suckers about 19 (18-25) in diameter; anal discs 4 (4-4.5) in diameter, distances between right and left discs 27 (27-35). Pseudanal setae $p s_{1}$ about 1.7 (1.7$2.2) \times$ length of $p s_{2}, 181$ (178-181) long, $p s_{2} 7.4$ (5.7$7.4) \times$ length of $p s_{3}, 104$ (81-106) long, $p s_{3} 14$ (14-16); $p s_{2}-p s_{2} 2.0(1.9-2.1) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 27$ (2429), $p s_{2}-p s_{2} 55$ (50-59).

Legs. Leg I. 181 (149-191) long; femur I 48 (40-50), $v F$ simple, 43 (40-43) long; genu I 34 (30-38), $\sigma^{\prime} 41$ (30-41), $\sigma " 30(22-30), I \sigma ': \sigma "=1.4$ (1.4-1.7), $c G 33$ (33-37), $m G$ 43 (42-46); tibia I 28 (25-31), 甲 103 (81-108), gT 33 (33-34), hT 38 (26-38); tarsus I 70 (65-78) long, 16 (26$25)$ wide, shape of ω_{1} slightly clavate, $17(15-17)$ long, ε

5 (4-5), $\omega_{2} 6$ (6-8), $\omega_{3} 18$ (18-22), distance between $a a$ and ω_{1} about 11 (10-11), aa 15 (15-17) long, ba 27 (2527), wa 41 (41-43), ra 30 (24-30), la 21 (18-21), d 24 (24-37), e $6(6-7), f 15(14-17), s 5(5-5.5), u$ and $v 4$ (44.5), p and $q 6(6-7)$, empodium $10(10-15)$, claw $12(11-$ 14). Leg II. 161 (146-184) long; femur II 43 (36-47), $v F$ 51 (51-54); genu II 33 (29-39), б 20 (16-20), cG 32 (3235), $m G 41$ (40-42); tibia II 25 (25-28), $\varphi 102$ (102-115), gT 34 (30-34), hT 37 (33-37); tarsus II 77 (65-77) long, 14 (14-22) wide, ω nearly cylindrical and slightly widened at apex, 18 (16-19) long, ba 20 (20-23), wa 39 (3441), ra 30 (30-32), la 20 (19-22), d 31 (31-33), e 7 (6-7), $f 14$ (13-14), $s 5$ (5-5.5), u and $v 4$ (4-4.5), p and $q 6$ (56), empodium 12 (12-16), claw 12 (11-13). Leg III. 175 (158-201) long; femur III 34 (30-40); genu III 29 (2732), $\sigma 20$ (8-20), nG 51 (43-55); tibia III 26 (26-28), φ 116 (116-119), kT 43 (43-48); tarsus III 73 (65-78) long, 11 (11-17) wide, w setiform, 34 (26-36) long, r setiform, 30 (24-30) long, $d 25$ (25-33), e 7 (6-7), f24 (18-24), s 5 (5-6), $u 4$ (3-4), v 5 (5-6), p and $q 2$ (2-2.5), empodium 10 (10-14), claw 12 (10-12). Leg IV. 197 (179-214) long; femur IV 38 (38-43), wF 37 (37-39); genu IV 34 (32-40); tibia IV 29 (29-31), $\varphi 109$ (102-109), kT 40 (39-40); tarsus IV 80 (76-90) long, 12 (12-17) wide, w and r situated at level between suckers and close to distal sucker, w setiform, 28 (27-30) long, r setiform, 17 (17-20) long, distances between basal rim and proximal sucker $d 23$ (21-27), between d and $e 19$ (18-21), between e and $f 24$ (23-27), ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=1.8(1.4-2.1), f 26(18-29)$ long, $s 5$ (5-6), $u 4$ (3-4), v 5 (5-6), p and $q 2(2-3)$, empodium 10 (10-14), claw 12 (10-12).
Distribution. BASED ON MATERIAL EXAMINED: New Zealand: WN. Australia, China (mainland, Taiwan), Ecuador, Germany, Japan, Netherlands, U.S.A.

BASED ON LITERATURE: Netherlands (Oudemans 1924a). Other previous records are doubtful because the concept of this species has been based on Robertson's revision in which T. putrescentiae is a complex of two species.
Material examined. Neotype and 60 other specimens see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: banana, Citrus aurantium, garlic, Gladiolus, humus, hyacinth, muscari bulb, mushroom, Narcissus bulb, orange, orchids, palm seed, Ranunculus sp. bulb, tulip bulb.

ANIMAL OR ANIMAL PRODUCTS: burrows \& nests of mutton birds (Puffinus tenuirostris), dead Tinca tinca (fish).

Remarks. The type of T. putrescentiae is a neotype male designated by Robertson (1959) in the Oudemans collection (RMNH) labeled "Tyroglyphus putrescentiae Schrank

1781, o ${ }^{\pi}$ dors., No. 17, P6984, in humus, Hilversum 22 April 1902, Oudemans".

Examination of the type specimen suggests that Robertson's concept of T. putrescentiae (Schrank) is a mixture of two species. Her description is based on the neotype of T. putrescentiae whilst her figures are based on the specimens in BMNH labelled "Tyrophagus putrescentiae (Schrank), $60^{\pi} 0^{x}$, 11 우우, ex cheese, Sutton Bonington, Leics., 20/10/50, P.L.R. Coll. No. 160(b)" which is considered a different species here as T. communis $\mathbf{s p} . \mathbf{n}$. (distinguishing characters see remarks in T. communis).

Tyrophagus putrescentiae differs from T. communis in the $2 / 3$ of posterior margin of coxal plates II being strongly concave and the solenidion ω_{1} widened at distal $2 / 3$.

Tyrophagus robertsonae Lynch, 1989

Fig. 68-77, Plates 2C, 5G, 7C, 11C, 14G, 15G, 17B, 20F, 22B, 26E, F, 30F, 31F, 33B
Tyrophagus robertsonae Lynch, 1989: 560.
Diagnosis. Female. Eyespots present, faint; scx slender, shaft slightly widening where pectinations begin, numbering 6-8 moderate or short; d_{1} about $2.8(2.8-2.9) \times$ length of c_{1} and $2.7(2.7-3.1) \times$ length of $d_{2} ; d_{2}$ about 1.0 $(0.9-1.0) \times$ length of c_{l}; coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II broadly triangular, posterior margin slightly concave and not reaching apex of its apodeme. Spermathecal duct small, narrowing rapidly from copulatory opening for a distance about $0.8(0.8-1.0) \times$ distance between sclerites of oviducts, then forming a cylindrical tube and slightly expanding at base of spermathecal sac, about 5.0 (4.8-5.7)× distance between sclerites of oviducts, base of spermathecal sac very small. Tarsus I ω_{1} strongly clavate; tarsus II ω slightly clavate; setae w and r of tarsus IV setiform.

Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{l} about $2.3(2.2-2.3) \times$ length of c_{1} and 2.3 (2.2-2.3) \times length of $d_{2} ; d_{2}$ about $1.0 \times$ length of c_{1}; aedeagus very small, with one major curve, narrowing gradually from base to tip, its distal end straight or slightly reversely curved, internal diameter linear; lateral arms supporting aedeagus turning inwards or outwards; setae w and r of tarsus IV setiform; ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=2.4$ (2.4-2.9).
Description. Female (Fig. 68-72, Plates 2C, 5G, 7C, 11C, 14G, 15G)
Idiosoma. 320 (320-379) long, 183 (183-194) wide. Chelicera 74 (74-78) long, cheliceral seta cha conical and distally bifurcate, 4 (4-5) long, subcapitular setae $m 31$ (31-40), palpal supracoxal seta elcp $10(10-11)$ long, dorsal palptibial seta 20 (20-22), lateral palptibial seta 16 (16-18), dorsal palptarsal seta 11 (11-14), palptarsal
solenidion 3 (2-3). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins slightly concave and posteriolateral margins straight or slightly convex; 64 (6468) long, 74 (74-79) wide between ve-ve. Eyespots present, faint. Grandjean's organ finger-like, 15 (15-17) long, its basal lobe with 2-3 spiniform teeth. Supracoxal seta scx slender, slightly widened in basal half, with 6-8 moderate or short pectinations, 29 (29-34) long. Ratios: $v i: v e=1.8, s c i: s c e=1.9, s c i-s c i: s c i-s c e=1.5(1.5-1.6)$. Lengths of setae: vi 66 (66-78), ve 37 (37-44), sci 164 (164-182), sce 86 (86-95); distances: vi-vi 11(11-13), vi-ve 32 (32-34), sci-sci 31 (31-37), sci-sce 21 (21-24). Hysterosomal setae d_{1} about 2.8 (2.8-2.9) \times length of c_{1} and $2.7(2.7-3.1) \times$ length of $d_{2} ; d_{2}$ about $1.0(0.9-1.0) \times$ length of c_{1}; lengths of setae: $c_{1} 26(26-32), c_{2} 221$ (221237), $c_{p} 119$ (119-123), $c_{3} 26(26-28), d_{1} 74$ (74-92), d_{2} 27 (27-30), $e_{1} 351$ (351-372), e 243 (243-260), $f_{2} 292$ (292-234), h 372 (372-404), h 322 (322-389), h 237 (237-267); distances: $c_{1}-c_{1} 70(70-78), c_{1}-d_{1} 44$ (44-48), $d_{1}-d_{1} 26(26-30), d_{2}-g l a 40(37-43), d_{1}-e_{1} 61(61-70)$, $e_{1}-e_{1} 60$ (60-68). Venter. Coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II broadly triangular, posterior margin slightly concave and not reaching apex of its apodeme. Setae $1 a 1.0 \times$ length of coxal plate II, 39 (39-40), 3a 22 (22-23); 3b 2.3 (2.3-2.6)× length of $3 a, 51(51-59)$ long; $g 18(18-20), 4 a 57$ (5764). Pseudanal setae $p s_{1} 1.9(1.7-1.9) \times$ as long as $p s_{2}, 167$ (167-181) long, $p s_{2} 4.5$ (4.5-4.9)× length of $p s_{3}, 90$ (90108) long, $p s_{3} 20$ (20-22). Adanal setae $a d_{1} 27$ (27-29), $a d_{2} 20$ (19-20), ad 14 (14-16). Copulatory opening 4 (4-6) in diameter, spermathecal duct short, narrowing rapidly from copulatory opening for a distance about 0.8 ($0.8-1.0$) \times diameter of copulatory opening, then forming a cylindrical tube and slightly expanding at base of spermathecal sac, about $5.0(4.8-5.7) \times$ distance between sclerites of oviducts, base of spermathecal sac very small, distance between sclerites of oviducts 5 (4-8).
Legs. Leg I. 165 (165-182) long; femur I 40 (40-43), $v F$ simple, 36 (36-40) long; genu I 30 (30-31), $\sigma^{\prime} 19$ (19-20), $\sigma " 15$ (15-18), I $\sigma^{\prime}: \sigma^{\prime \prime}=1.3$ (1.1-1.3), $c G 30$ (30-33), $m G$ 39 (39-42); tibia I 23 (23-26), 甲 102 (102-111), gT 36 (36-40), hT 40 (38-44); tarsus I 66 (66-75) long, 20 (1922) wide, ω_{1} strongly clavate, $15(15-17)$ long, $\varepsilon 5$ (4-5), $\omega_{2} 6(6-8), \omega_{3} 23$ (23-28), distance between $a a$ and ω_{1} about 10 (10-13), aa 20 (20-28) long, ba 28 (27-30), wa 40 (40-45), ra 28 (28-31), la 20 (20-23), d 29 (29-33), e 5 (5-7), $f 14$ (14-17), $s 5$ (5-5.5), u and $v 5$ (5-5.5), p and $q 6$ (6-7), empodium 13 (13-15), claw 13 (13-15). Leg II. 155 (155-161) long; femur II 40 (40-43), $v F 46$ (4650); genu II 31 (31-34), $\sigma 17$ (17-19), $c G 27$ (27-30), $m G$ 40 (40-44); tibia II 21 (21-23), 甲 $100(100-105), g T 28$ (28-31), hT 32 (32-34); tarsus II 62 (62-68) long, 20
(18-20) wide, ω clavate, 16 (16-17) long, ba 22 (22-23), wa 36 (36-38), ra 27 (27-28), la 17 (17-20), d 28 (28$31)$, e $6(6-7), f 16(16-19), s 5(5-5.5), u$ and $v 5(5-5.5)$, p and $q 6(6-7)$, empodium 13 (13-14), claw $12(12-15)$. Leg III. 158 (158-162) long; femur III 33 (33-35); genu III 24 (24-26), $\sigma 12$ (12-14), $n G 39$ (39-41); tibia III 22 (22-24), $\varphi 118$ (118-121), kT 42 (42-46); tarsus III 66 (66-70) long, 15 (15-17) wide, w setiform, 29 (29-33) long, r setiform, 27 (27-29) long, $d 26$ (26-30), e 5 (5-6), $f 20(20-21), s 6(5-6), u 4(4-5), v 6(6-7), p$ and $q 3$ (33.5), empodium 13(13-15), claw 12 (12-14). Leg IV. 182 (182-191) long; femur IV 35 (35-38), wF 36 (36-40); genu IV 33 (33-36); tibia IV 24 (24-27), $\varphi 96$ (96-101), $k T 36$ (36-40); tarsus IV 76 (76-80) long, 17 (17-18) wide, w setiform, 30 (30-33) long, r setiform, 24 (24-26) long, $d 26$ (26-28), e 5 (5-6), f23 (19-23), s 5 (5-6), u 4 (4-4.5), v 5 (5-6), p and $q 3$ (3-3.5), empodium 13 (1315), claw 12 (12-13).

Male (Fig. 73-77, Plates 17B, 20F, 22B, 26E, F, 30F, 31F, 33B)
Idiosoma. 267 (267-286) long, 166 (166-182) wide. Chelicera 55 (55-57) long, cheliceral seta cha conical, 3.5 (33.5) long, subcapitular setae $m 22$ (22-26), palpal supracoxal seta elcp $7(7-9)$ long dorsal palptibial seta 16 (16-18), lateral palptibial seta $10(10-12)$, dorsal palptarsal seta $8(8-10)$, palptarsal solenidion $2(2-3)$. Dorsum. Prodorsal shield as in female, 50 (50-54) long, 57 (57-61) wide between ve-ve. Eyespots present. Grandjean's organ as in female, $12(10-12)$ long, supracoxal seta with 5-6 pectinations, 21 (21-24) long. Ratios: vi: ve $=1.8(1.8-1.9)$, sci $: s c e=1.8(1.6-1.8)$, sci-sci: $s c i-s c e=$ 1.4 (1.3-1.4). Lengths of setae: vi 53 (53-62), ve 30 (3033), sci 119 (119-125), sce 68 (68-76); distances: vi-vi 9 (9-10), vi-ve 24 (24-26), sci-sci 23 (23-26), sci-sce 17 (17-20). Hysterosomal setae d_{1} about 2.3 (2.2-2.3)× length of c_{1} and $2.3(2.2-2.3) \times$ length of $d_{2} ; d_{2}$ about $1.0 \times$ length of c_{1}; lengths of setae: $c_{1} 19(19-23), c_{2} 168(168-$ 177), $c_{p} 105$ (105-119), $c_{3} 20(20-22), d_{1} 43(43-51), d_{2}$ 19 (19-23), $e_{1} 202$ (202-221), $e_{2} 167$ (167-170), $f_{2} 231$ (231-254), h 271 (271-277), h2 258 (258-271), h 180 (180-188); distances: $c_{1}-c_{1} 63(63-66), c_{1}-d_{1} 38(38-40)$, $d_{1}-d_{1} 24(24-27), d_{2}-$ gla 37 (37-39), $d_{1}-e_{1} 42$ (42-48), $e_{1}-e_{1} 58(58-60)$. Venter. Shape of coxal plates I and II as in female. Setae $1 a 0.8(0.8-0.9) \times$ length of coxal plate II, 23 (23-26) long; $3 a 13(13-14)$; $3 b 2.2(2.2-2.5) \times$ length of $3 a, 28$ (28-35) long; $g 15$ (13-15), 4a 26 (26-30). Aedeagus very small, 12 (12-13) long, with one major curve, narrowing gradually from base to tip, its distal end straight or slightly reversely curved, internal diameter linear; lateral arms supporting aedeagus turning inwards but maybe outwards in some specimens. Anal slit 48 (48-51) long, distance between anterior rim of anal slit and poste-
rior margin of aedeagus 12 (10-12). Anal suckers about 16 (11-16) in diameter; anal discs 3 (3-4) in diameter, distances between right and left discs 19 (19-21). Pseudanal setae $p s_{1}$ about $2.3(2.0-2.3) \times$ length of $p s_{2}, 115(115-$ 122) long, $p s_{2} 4.5(4.5-4.7) \times$ length of $p s_{3}$, $50(50-61)$ long, $p s_{3} 11(11-13) ; p s_{2}-p s_{2} 2.1(2.0-2.1) \times$ distance $p s_{1}-$ $p s_{1}, p s_{1}-p s_{1} 17$ (16-17), $p s_{2}-p s_{2} 35$ (35-37).
Legs. Leg I. 128 (128-137) long; femur I 33 (33-36), $v F$ simple, 29 (29-32) long; genu I 24 (24-27), $\sigma^{\prime} 20$ (20-24), $\sigma " 23$ (23-24), I σ ': $\sigma "=0.9$ (0.9-1.0), $c G 24$ (24-27), $m G$ 27 (27-30); tibia I 19 (19-21), $\varphi 84$ (84-97), gT 16 (1620), $h T 16$ (16-22); tarsus I 52 (52-55) long, 16 (16-18) wide, ω_{1} strongly clavate, 13 (13-14) long, $\varepsilon 4(3-4), \omega_{2} 5$ (5-6), $\omega_{3} 16(16-18)$, distance between $a a$ and ω_{1} about 8 (8-10), aa 16 (16-18) long, ba 16 (16-19), wa 24 (2426), ra 21 (21-24), la 16 (16-18), d 23 (23-26), e 6 (5-6), $f 12(12-14), s 4(4-4.5), u$ and $v 4$ (4-4.5), p and $q 6$ (67), empodium 11 (11-13), claw 11 (11-12). Leg II. 124 (124-133) long; femur II 31 (31-33), $v F 37$ (37-41); genu II 24 (24-25), $\sigma 14$ (14-16), cG 17 (17-19), $m G 21$ (2126); tibia II 17 (17-20), 甲 79 (79-85), gT 14 (14-16), $h T$ 18 (18-20); tarsus II 50 (50-56) long, 16 (16-17) wide, ω clavate, 14 (14-15) long, ba 17 (17-19), wa 27 (27-29), ra 17 (17-20), la 12 (12-16), d 19 (19-21), e 6 (5-6), f8 (8-10), $s 4$ (4-4.5), u and $v 4$ (4-5), p and $q 6$ (6-7), empodium 11 (11-13), claw 11 (11-13). Leg III. 129 (129-135) long; femur III 25 (25-28); genu III 20 (2022), $\sigma 8$ (8-10), $n G 29$ (29-32); tibia III 18 (18-20), $\varphi 95$ (95-102), kT 21 (21-25); tarsus III 50 (50-55) long, 12 (12-14) wide, w setiform, 19 (19-22) long, r setiform, 18 (17-18) long, $d 17$ (17-19), e 5 (5-5.5), $f 15$ (15-17), s 5 (5-5.5), $u 4$ (3-4), v 5 (5-6), p and $q 2$ (2-2.5), empodium 11 (11-13), claw 10 (10-12). Leg IV. 143 (143-158) long; femur IV 25 (25-29), $w F 27$ (27-30); genu IV 25 (25-28); tibia IV 20 (20-23), $\varphi 80$ ($80-89$), $k T 20$ (20-24); tarsus IV 59 (59-66) long, 13 (13-16) wide, w and r situated at level between suckers, w setiform, 26 (26-28) long, r setiform, 19 (19-22) long, distances between basal rim of tarsus IV and proximal sucker $d 20(20-25)$, between d and $e 13(13-18)$, between e and $f 14(14-15)$, ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=2.4(2.4-2.9), f 17(17-19)$ long, $s 5(5-5.5), u 4$ (3-4), $v 5$ (5-5.5), p and $q 3(2-3)$, empodium 11 (11-13), claw 11 (10-11).
Distribution. BASED ON MATERIAL EXAMINED: New Zealand: MC. Thailand.
BASED ON LITERATURE: U.S.A. (Lynch 1989).
Material examined. Holotype, 11 paratypes and 34 nontype specimens - see Appendix 1 for details of specimens examined.
Habitat and host. Soil, lab culture, mangosteen, onions.
Remarks. Tyrophagus robertsonae is similar to T. javensis
(Oudemans, 1916) in having a short cylindrical spermathecal duct and a small base to the spermathecal sac in female (Fig. 70, 122) and a small aedeagus in male (Fig. 75, 126). It differs from the latter in the scx being tapering (Fig. 70) rather than widened at bases of pectinations (Fig. 121) and seta r of tarsus IV being setiform (Fig. 72, 77) rather than spiniform (Fig. 123, 128). Thus, morphologically, these two species are very close.

Tyrophagus savasiLynch, 1989

Fig. 78-87, Plates 2D, 5H, 7D, 11D, 14H, 15H, 17C, 20G, 22C, 27A, B, 30G, 31G, 33C
Tyrophagus savasi Lynch, 1989: 548.
Diagnosis. Female. Eyespots present; $s c x$ widened in basal $2 / 3$, with $8-12$ long or short pectinations; d_{1} about $2.4(2.2-2.5) \times$ length of c_{1} and $2.8(2.7-2.9) \times$ length of d_{2}; d_{2} about $0.9(0.8-0.9) \times$ length of c_{1}; coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II triangular, not extending to apex of apodeme II, with posterior margin nearly straight. Spermathecal duct narrowing rapidly from copulatory opening for a distance about 0.8 ($0.5-0.8) \times$ distance between sclerites of oviducts, then forming a cylindrical tube and narrowing at base of spermathecal sac, about $1.7(1.6-1.8) \times$ distance between sclerites of oviducts, base of spermathecal sac bending forwards, funnel-shaped. Tarsus I ω_{1} moderate, mostly cylindrical; tarsus II ω nearly cylindrical; setae w and r of tarsus IV setiform.
Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about 3.1 (3.1-3.2) \times length of c_{1} and 2.6 $(2.6-2.7) \times$ length of $d_{2} ; d_{2}$ about $1.2(1.2-1.3) \times$ length of c_{1}; aedeagus with one major curve, narrowing gradually in basal half, its distal end straight or slightly reversely curved, internal diameter linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=1.8$.
Description. Female (Fig. 78-82, Plates 2D, 5H, 7D, $11 \mathrm{D}, 14 \mathrm{H}, 15 \mathrm{H})$
Idiosoma. 459 (448-509) long, 292 (256-292) wide. Chelicera 108 (101-108) long, cheliceral seta cha conical, 8 (7-8) long, subcapitular setae $m 45$ (45-51), palpal supracoxal seta elcp 14 (12-14) long, dorsal palptibial seta 32 (28-32), lateral palptibial seta 24 (22-24), dorsal palptarsal seta 19 (19-21), palptarsal solenidion 5 (55.5). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins slightly concave and with a small medial lobe; 102 (98-102) long, 107 (102-107) wide between $v e-v e$. Eyespots present. Grandjean's organ finger-like, 19 (17-19) long, its basal lobe with $3-4$ spiniform teeth. Supracoxal seta scx widened in basal $2 / 3$, with $8-12$ long pectinations, 41 (37-41) long. Ratios: $v i$: ve $=2.5$ (2.1-
2.5), sci: $s c e=1.7$ (1.6-1.7), $s c i-s c i: s c i-s c e=1.3(1.2-$ 1.4). Lengths of setae: vi 119 (93-119), ve 47 (43-54), sci 219 (184-224), sce 132 (111-142); distances: vi-vi 15 (13-15), vi-ve 46 (44-47), sci-sci 47 (44-47), sci-sce 35 (34-35). Hysterosomal setae d_{1} about 2.4 (2.2-2.5)× length of c_{1} and $2.8(2.7-2.9) \times$ length of $d_{2} ; d_{2}$ about 0.9 $(0.8-0.9) \times$ length of c_{1}; lengths of setae: $c_{1} 56(45-59), c_{2}$ 252 (224-257), $c_{p} 202(197-212), c_{3} 53(48-55), d_{1} 133$ (113-133), $d_{2} 48$ (39-49), $e_{1} 362$ (347-371), e, 248 (239$251), f_{2} 424$ (399-441), $h_{1} 438$ (405-444), $h_{2} 436$ (408437), $h_{3} 306$ (267-312); distances: $c_{1}-c_{1} 122$ (114-124), $c_{1}-d_{1} 64$ (61-66), $d_{1}-d_{1} 45$ (42-47), $d_{2}-$ gla 61 (57-66), $d_{1}-e_{1} 100(89-105), e_{1}-e_{1} 111$ (99-114). Venter. Coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II triangular, not extending posteriorly beyond apex of apodeme II, with posterior margin nearly straight. Setae $1 a 1.1 \times$ length of coxal plate II, 69 (69$71)$, $3 a 33$ (28-33); $3 b 2.9$ (2.8-2.9) \times length of $3 a, 96$ (88-101) long; g 31 (29-33), 4a 125 (111-127). Pseudanal setae $p s_{1} 1.6(1.4-1.6) \times$ as long as $p s_{2}, 293(279-302)$ long, $p s_{2} 5.6$ (5.6-6.4) \times length of $p s_{3}, 178$ (164-212) long, $p s_{3} 32$ (29-33). Adanal setae $a d_{1} 20$ (19-22), ad 23 (19$23), a_{3} 19$ (16-21). Copulatory opening 12 (9-12) in diameter, spermathecal duct narrowing rapidly from copulatory opening for a distance about $0.8(0.5-0.6) \times$ between sclerites of oviducts, then forming a cylindrical tube and narrowing at base of spermathecal sac, about 1.7 $(1.6-1.8) \times$ distance between sclerites of oviducts, base of spermathecal sac bending forwards, funnel-shaped, distance between sclerites of oviducts 27 (25-28).
Legs. Leg I. 252 (244-256) long; femur I 59 (56-61), $v F$ simple, 56 (54-61) long; genu I 44 (42-45), $\sigma^{\prime} 51$ (48-52), $\sigma " 38$ (37-39), I σ ': $\sigma "=1.3$ (1.2-1.3), $c G 53$ (49-55), $m G$ 57 (50-57); tibia I 35 (33-36), $\varphi 142$ (132-155), gT 45 (39-47), hT 51 (49-54); tarsus I 97 (84-101) long, 25 (22-25) wide, ω_{1} moderate, mostly cylindrical, 16 (1517) long, $\varepsilon 5$ (4-5), $\omega_{2} 8$ (7-9), $\omega_{3} 28$ (27-31), distance between $a a$ and ω_{1} about 15 (12-15), aa 28 (26-29) long, ba 29 (27-29), wa 46 (44-51), ra 41 (40-42), la 29 (2731), $d 57$ (48-59), e 8 (7-8), f23 (20-27), $s 7$ (6.5-7), u and $v 6$ (5.5-6), p and $q 8$ (7-8), empodium 17 (15-17), claw 16 (14-17). Leg II. 239 (222-241) long; femur II 59 $(52-61), v F 70(67-71)$; genu II 45 (43-46), $\sigma 30(28-33)$, $c G 43$ (42-45), $m G 58$ (55-61); tibia II 32 (31-33), $\varphi 149$ (121-154), gT 37 (34-39), hT 51 (50-55); tarsus II 85 (79-88) long, 22 (20-22) wide, ω moderate, mostly cylindrical, 20 (19-21) long, ba 29 (25-30), wa 43 (39-45), ra 37 (36-38), la 25 (24-26), d 50 (39-51), e 8 (7-8), f 24 (23-29), $s 6$ (6-6.5), u and $v 6$ (5.5-6), p and $q 7$ (7-8), empodium 13, claw 15 (14-17). Leg III. 242 (222-244) long; femur III 51 (49-53); genu III 41 (37-41), o 18 (1722), $n G 66$ (59-68); tibia III 34 (33-36), $\varphi 167$ (154-
172), kT 65 (58-68); tarsus III 95 (94-101) long, 18 (1720) wide, w setiform, 40 (39-44) long, r setiform, 37 (3439) long, $d 41$ (39-42), e 7 (6-7), f37(34-41), $s 6$ (6-7), $u 5$ (5-6), v 7 (6-7), p and $q 4$ (3-4), empodium 14 (1316), claw 13 (13-15). Leg IV. 279 (266-281) long; femur IV 61 (58-63), wF 53 (52-60); genu IV 46 (45-46); tibia IV 41 (37-44), $\varphi 116$ (98-121), kT 61 (56-64); tarsus IV 110 (97-112) long, 19 (17-20) wide, w setiform, 46 (4247) long, r setiform, 42 (38-42) long, $d 53$ (51-53), e 7 (6-7), f32 (31-34), $s 6$ (6-7), $u 5$ (4.5-5), $v 6$ (6-7), p and $q 3.5$ (3-4), empodium 13, claw 13 (13-15).
Male (Fig. 83-87, Plates 17C, 20G, 22C, 27A, B, 30G 31G, 33C)
Idiosoma. 402 (385-437) long, 247 (204-247) wide. Chelicera 95 (89-96) long, cheliceral seta cha conical, 6 (5-6) long, subcapitular setae $m 43$ (41-50), palpal supracoxal seta elcp $12(12-13)$ long dorsal palptibial seta 26 (2327), lateral palptibial seta 17 (16-20), dorsal palptarsal seta 15 (15-18), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield as in female, 75 (69-77) long, 97 (95101) wide between ve-ve. Eyespots present. Grandjean's organ as in female, $14(12-14)$ long, supracoxal seta with $8-12$ pectinations, 27 (23-29) long. Ratios: vi: ve $=1.7$ (1.6-1.9), sci: $s c e=1.9$ (1.7-2.2), sci-sci: $s c i-s c e=1.0$ (1.0-1.1). Lengths of setae: vi 95 (89-105), ve 57 (5461), sci 205 (189-214), sce 108 (99-115); distances: vivi 16 (14-16), vi-ve 41 (38-42), sci-sci 35 (34-37), scisce 35 (32-36). Hysterosomal setae d_{1} about 3.1 (3.1$3.2) \times$ length of c_{1} and $2.6(2.6-2.7) \times$ length of $d_{2} ; d_{2}$ about $1.2(1.2-1.3) \times$ length of c_{1}; lengths of setae: $c_{1} 35$ (3336), $c_{2} 218$ (198-234), $c_{p} 171$ (164-185), $c_{3} 45$ (43-50), $d_{1} 110(104-121), d_{2} 43(39-46), e_{1} 333$ (308-346), e_{2} 217 (210-237), $f_{2} 365$ (337-374), $h_{1} 373$ (332-381), h_{2} 400 (384-410), $h_{3} 290$ (278-304); distances: $c_{1}-c_{1} 92$ (90101), $c_{1}-d_{1} 40(39-43), d_{1}-d_{1} 35$ (34-37), $d_{2}-$ gla 65 (59$66), d_{1}-e_{1} 82(78-82), e_{1}-e_{1} 102$ (97-109). Venter. Shape of coxal plates I and II as in female. Setae la 1.2 (1.1$1.2) \times$ length of coxal plate II, 54 (50-58) long; $3 a 26$ (2527); $3 b 3.2$ (3.2-3.5) \times length of $3 a, 82(81-96)$ long; $g 26$ (24-26), $4 a 97$ (96-102). Aedeagus with one major curve, narrowing gradually in basal half, its distal end straight or slightly reversely curved, internal diameter linear, 26 (2526) long; lateral arms supporting aedeagus turning outwards. Anal slit 75 (73-76) long, distance between anterior rim of anal slit and posterior margin of aedeagus 20 (18-22). Anal suckers about 31 (26-32) in diameter; anal discs 5 (4-6) in diameter, distances between right and left discs 40 (38-41). Pseudanal setae $p s_{1}$ about 1.5 (1.4$1.5) \times$ length of $p s_{2}, 221$ (219-228) long, $p s_{2} 9.5$ (8.7$9.5) \times$ length of $p s_{3}, 143$ (130-151) long, $p s_{3} 15$ (14-16); $p s_{2}-p s_{2} 1.8(1.7-1.8) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 30(30-$ 33), $p s_{2}-p s_{2} 55$ (54-57).

Legs. Leg I. 203 (197-210) long; femur I 52 (49-53), $v F$
simple, 49 (47-55) long; genu I 40 (39-41), $\sigma^{\prime} 35(35-38)$, $\sigma " 31(30-31), \mathrm{I} \sigma$ ': $\sigma "=1.1$ (1.1-1.2), $c G 37$ (35-39), $m G$ 53 (50-53); tibia I $30(30-31), \varphi 114$ (102-116), gT 34 (33-38), hT 46 (43-46); tarsus I 76 (74-80) long, 23 (2224) wide, ω_{1} nearly cylindrical, 16 (15-16) long, $\varepsilon 3$ (34), $\omega_{2} 8(6-8), \omega_{3} 25$ (22-27), distance between $a a$ and ω_{1} about 12 (10-13), aa 25 (25-27) long, ba 30 (28-32), wa 45 (43-46), ra 33 (33-35), la 25 (24-26), d 49 (45-49), e 7 (7-8), $f 19(17-21), s 6(6-6.5), u$ and $v 5$ (5-5.5), p and $q 8$ (7-8), empodium 15 (14-16), claw 13 (12-14). Leg II. 195 (189-200) long; femur II 50 (48-53), vF 59 (5461); genu II 40 (38-42), $\sigma 26$ (25-28), $c G 36$ (36-38), $m G$ 45 (44-47); tibia II 30 (29-30), 甲 120 (102-121), gT 40 (37-40), $h T 35$ (33-36); tarsus II 75 (75-80) long, 22 (20-22) wide, ω cylindrical, 17 (16-18) long, ba 26 (2627), wa 45 (44-47), ra 37 (37-38), la 22 (20-23), d 46 (45-46), e 7 (6-7), f20 (19-22), $s 6$ (6-6.5), u and $v 5$ (5$6), p$ and $q 8(7-8)$, empodium 14 (13-16), claw 16 (1417). Leg III. 212 (204-220) long; femur III 40 (38-45); genu III 35 (33-37), $\sigma 20$ (19-22), nG 55 (52-57); tibia III 30 (29-33), 甲 121 (108-122), kT 52 (50-53); tarsus III 80 (78-87) long, 16 (16-17) wide, w setiform, 36 (36-41) long, $r 35$ (34-39) long, $d 43$ (40-44), e 6 (6-6.5), f 29 (24-29), $s 6$ (6-6.5), $u 4$ (4-4.5), v 6 (5.5-6), p and $q 3$ (34), empodium 13 (13-15), claw 13 (13-15). Leg IV. 231 (228-233) long; femur IV 49 (45-49), wF 44 (43-50); genu IV 40 (39-42); tibia IV 35 (34-37), $\varphi 107$ (101109), kT 48 (43-48); tarsus IV 85 (84-89) long, 17 (1617) wide, w and r situated slightly anterior to or at level of distal sucker, w setiform, 42 (41-44) long, r setiform, 25 (25-27) long, distances between basal rim of tarsus IV and proximal sucker $d 24(23-25)$, between d and $e 23$ (22-23), between e and $f 26(25-27)$, ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=1.8$, $f 36$ (33-37) long, $s 6$ (6-6.5), $u 4$ (4-5), v 6 (6-6.5), p and $q 3$ (3-4), empodium 13 (12-13), claw 12 (11-13).

Distribution. BASED ON MATERIAL EXAMINED: New Zealand: TK, WN / DN. U.K.

BASED ON LITERATURE: U.K. (Lynch 1989).
Material examined. Holotype, 8 paratypes, and 26 nontype specimens - see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: Coprosma lucida, Narcissus bulbs.

ANIMAL OR ANIMAL PRODUCTS: honeybee, cheese.
Remarks. Tyrophagus savasi is very similar to T. neiswanderi Johnston \& Bruce in structure of spermathecal duct and scx (Fig. 50, 80), base of spermathecal sac being funnel-shaped in female. It differs from the latter in ω_{1} of tarsus I and ω of tarsus II being stout (Fig. 86) rather than slender (Fig. 51) and aedeagus of male being long (Fig. 85) rather than short (Fig. 55).

Tyrophagus similis Volgin, 1949

Fig. 88-98, Plates 3A, 5I, 8A, 12A, 14I, 15I, 17D, 20H, 22D, $27 \mathrm{C}, 30 \mathrm{H}, 31 \mathrm{H}, 33 \mathrm{D}$
Tyrophagus similis Volgin, 1949: 387; Samšiòák, 1962: 274; Hughes, 1976: 64; Fain, 1977: 561; Nakao \& Kurosa, 1988: 136.
Tyrophagus oudemansi Robertson, 1959: 167; synonymy by Samšiòák, 1962: 274.
Tyrophagus dimidiatus (Hermann, 1804); Hughes, 1961: 45.
Diagnosis. Female. Eyespots absent; scx slender, tapering from base to tip, with 12-16 short pectinations; setae c_{1}, d_{1} and d_{2} micro-setae, obviously very much shorter than others; d_{l} about $1.0(1.0-1.2) \times$ length of c_{l} and 1.4 $(1.1-1.4) \times$ length of d_{2}, d_{2} about $0.8(0.8-1.2) \times$ length of c_{1}; coxal plates I not reaching to posterior apex of prosternal apodeme; coxal plates II not extending posteriorly beyond apex of apodeme II, with posterior margin sinuous and distal $1 / 3$ becoming concave and narrow. Spermathecal duct broad, widening gradually from copulatory opening to base of spermathecal sac, about $1.4(1.4-1.6) \times$ distance between sclerites of oviducts, base of spermathecal sac broadly round, bending backwards. Tarsus I ω_{1} stout and obviously widened at apex, tarsus II ω strong and widened at apex; setae w and r of tarsus IV spiniform.
Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about $1.0(1.0-1.3) \times$ length of c_{1} and 1.1 $(0.6-1.2) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-1.2) \times$ length of c_{l}; aedeagus with one major curve, narrowing gradually in basal half and almost cylindrical in distal half, distal end truncated, internal diameter tapering rapidly from distal end to midlength; lateral arms supporting aedeagus turning inwards; setae w and r of tarsus IV spiniform, situated anteriorad of or close to distal sucker, ratio $(a+b): c=0.8$ (0.8-1.1).

Description. Female (Fig. 88-92, Plates 3A, 5I, 8A, 12A, 14I, 15I)
Idiosoma. 522 (522-577) long, 324 (324-397) wide. Chelicera 105 (105-116) long, cheliceral seta cha conical, 8 (8-9) long, subcapitular setae $m 42$ (42-45), palpal supracoxal seta elcp $11(11-13)$ long, dorsal palptibial seta 24 (24-28), lateral palptibial seta 18 (18-23), dorsal palptarsal seta 13 (13-19), palptarsal solenidion 6 (5-6). Dorsum. Prodorsal shield obviously punctate, nearly rectangular in shape, lateral margin slightly concave, posterior margin broadly round; 83 (83-97) long, 101 (101118) wide between ve-ve. Eyespots absent. Grandjean's organ finger-like, 25 (25-26) long, its basal lobe with 3 obvious spiniform teeth. Supracoxal seta $s c x$ slender, tapering from base to tip, with $12-16$ short pectinations, 48 (43-53) long. Ratios: $v i$: $v e=1.6$ (1.6-1.8), sci: sce $=$ 1.9 (1.6-1.9), sci-sci: $s c i-s c e=1.7$ (1.4-1.7). Lengths of
setae: vi 91 (91-111), ve 58 (58-63), sci 218 (218-225), sce 112 (112-138); distances: vi-vi 13 (13-17), vi-ve 42 (42-52), sci-sci 42 (42-50), sci-sce 25 (25-36). Hysterosomal setae c_{1}, c_{3}, d_{1} and d_{2} minute, obviously shorter than others; d_{1} about $1.0(1.0-1.2) \times$ length of c_{1} and $1.4(1.1-1.4) \times$ length of $d_{2} ; d_{2}$ about $0.8(0.8-1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 29(25-30), c_{2} 199(199-$ 202), $c_{p} 145(145-151), c_{3} 33(33-38), d_{1} 30(30-37), d_{2}$ $22(22-36), e_{1} 279$ (255-279), e 205 (183-205), $f_{2} 383$ (328-383), $h_{1} 366$ (276-366), $h_{2} 394$ (365-394), h 271 (266-271); distances: $c_{1}-c_{1} 142(142-153), c_{1}-d_{1} 72(71-$ $72), d_{1}-d_{1} 79$ (79-92), $d_{2}-g l a ~ 60(33-63), d_{1}-e_{1} 79$ (79$93), e_{1}-e_{1} 159$ (159-174). Venter. Coxal plates I not reaching to posterior apex of prosternal apodeme; coxal plates II not extending posteriorly beyond apex of apodeme II, with posterior margin sinuous and distal $1 / 3$ becoming concave and narrow. Setae la $0.6(0.6-0.7) \times$ length of coxal plate II, 35 (35-41) long, 3a 22 (22-30); 3b 1.7 (1.5-1.7) \times length of $3 a, 37$ (37-44) long; $g 20$ (20-25), 4a $51(50-51)$. Pseudanal setae $p s_{1} 3.3(2.0-3.3) \times$ as long as $p s_{2}, 173$ (173-246) long, $p s_{2} 2.2(2.2-4.5) \times$ length of $p s_{3}$, 53 (53-121) long, $p s_{3} 24$ (24-27). Adanal setae $a d_{1} 17$ (17-23), ad 18 (18-20), ad 18 (18-20). Copulatory opening 14 (13-14) in diameter, spermathecal duct broad, widening gradually from copulatory opening to base of spermathecal sac, about $1.4(1.4-1.6) \times$ distance between sclerites of oviducts, base of spermathecal sac broadly round, bending backwards, distance between sclerites of oviducts 37 (37-43).
Legs. Leg I. 235 (235-248) long; femur I 64 (64-70), $v F$ simple, 50 (50-53) long; genu I 41 (41-42), $\sigma^{\prime} 67$ (57-72), $\sigma " 38$ (30-38), I σ ': $\sigma "=1.8(1.8-2.0), c G 36(36-50), m G$ 50 (50-61); tibia I 33 (33-35), $\varphi 131$ (131-139), gT 34 (34-40), hT 38 (38-47); tarsus I 98 (98-101) long, 31 (29-31) wide, ω_{1} stout and obviously widened at apex, 20 (20-23) long, $\varepsilon 5(2-5), \omega_{2} 11(11-13), \omega_{3} 34$ (33-34), distance between $a a$ and ω_{1} about 14 (11-14), aa 28 (2830) long, ba 35 (34-35), wa 62 (60-62), ra 45 (44-45), la 30 (29-30), $d 42$ (42-43), e $10(10-11), f 17$ (17-19), $s 8$ (8-10), u and $v 8(8-12), p$ and $q 10(10-12)$, empodium 20 (19-22), claw 19 (19-21). Leg II. 219 (219-233) long; femur II 60 (60-63), $v F 65$ (65-71); genu II 34 (34-38), σ 30 (28-30), cG 30 (30-43), $m G 45$ (45-59); tibia II 34 (34-36), 甲 138 (138-147), gT 26 (26-34), hT 36 (36-43); tarsus II 90 (90-96) long, 28 (23-28) wide, ω strong and widened at apex, 23 (23-26) long, ba 33 (33-34), wa 53 (53-65), ra 42 (42-48), la 23 (23-28), d 37 (37-43), e 10 $(10-11), f 18(18-24), s 9(8-9), u$ and $v 9(8-9), p$ and q 10 (7-10), empodium 19 (18-19), claw 18 (18-20). Leg III. 207 (207-233) long; femur III 43 (43-50); genu III 34 (34-40), $\sigma 23$ (23-24), $n G 52$ (52-58); tibia III 32 (3234), $\varphi 138$ (136-138), kT 44 (44-50); tarsus III 97 (97-
109) long, 21 (20-21) wide, w spiniform, 37 (37-43) long, r setiform, 36 (36-40) long, $d 28$ (28-29), e 8 (8-9), $f 27$ (26-27), $s 8$ (7-8), u and $v 7$ (7-8), p and $q 5$ (5-5.5), empodium 17 (17-19), claw 16 (16-21). Leg IV. 238 (238-278) long; femur IV 50 (50-57), wF 44 (44-53); genu IV 45 (45-53); tibia IV 35 (35-41), $\varphi 109$ (109112), $k T 42$ (42-53); tarsus IV 113 (113-127) long, 22 (18-22) wide, w spiniform, 36 (36-48) long, r spiniform, 24 (24-31) long, d 34 (34-36), e $9(9-10)$, f35 (33-35), s 7.5 (7.5-8), $u 7.5, v 8, p$ and $q 4$ (4-4.5), empodium 17 (17-18), claw 17 (17-20).
Male (Fig. 93-97, Plates 17D, 20H, 22D, 27C, 30H, 31H, 33D)
Idiosoma. 526 (502-526) long, 372 (341-372) wide. Chelicera 112 (96-112) long, cheliceral seta cha conical, 10 (9-10) long, subcapitular setae $m 46$ (39-46), palpal supracoxal seta elcp 11 (11-12) long, dorsal palptibial seta 24 (24-25), lateral palptibial seta 18 (17-18), dorsal palptarsal seta 13 (13-16), palptarsal solenidion 5 (5-6).
Dorsum. Prodorsal shield laterally concave and posteriorly convex, 92 (84-92) long, 113 (105-113) wide between ve-ve. Eyespots absent. Grandjean's organ as in female, 19 (17-19) long; supracoxal seta slender as in female, with $12-18$ short pectinations, 47 (40-47) long. Ratios: $v i: v e=1.7(1.7-1.9)$, sci: sce $=1.8(1.7-1.8)$, scisci: $s c i-s c e=1.5$ (1.5-1.8). Lengths of setae: vi 108 (86108), ve 63 (46-63), sci 245 (193-245), sce 135 (113135); distances: vi-vi 18 (14-18), vi-ve 48 (43-48), scisci 45 (43-45), sci-sce 30 (25-30). Hysterosomal setae d_{1} about $1.0(1.0-1.3) \times$ length of c_{1} and $1.1(0.6-1.2) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 30(18-30), c_{2} 241(208-241), c_{p} 178$ (130178), $c_{3} 35$ (30-35), $d_{1} 30(20-30), d_{2} 27$ (19-27), $e_{1} 208$ (208-233), $e_{2} 232$ (141-232), $f_{2} 411$ (293-411), $h_{1} 383$ (213-383), $h_{2} 435$ (321-435), $h_{3} 323$ (198-323); distances: $c_{1}-c_{1} 151(125-151), c_{1}-d_{1} 67(67-71), d_{1}-d_{1} 75(75-87)$, d_{2}-gla 53 (51-53), $d_{1}-e_{1} 83$ (68-83), $e_{1}-e_{1} 167$ (155167). Venter. Shape of coxal plates I and II as in female. Setae la $0.5(0.5-1.6) \times$ length of coxal plate II, 31 (3132) long; $3 a 22(20-22)$; $3 b 1.7(1.7-1.8) \times$ length of $3 a, 37$ (34-37) long; $g 22$ (19-22), $4 a 53$ (45-53). Aedeagus with one major curve, 23 long, narrowing gradually in basal half and almost cylindrical in distal half, distal end truncated, internal diameter tapering rapidly from distal end to midlength; lateral arms supporting aedeagus turning inwards. Anal slit 92 (75-92) long, distance between anterior rim of anal slit and posterior margin of aedeagus 11 (11-17). Anal suckers about 27 (27-32) in diameter; anal discs 5 (5-6) in diameter, distances between right and left discs 36 (33-36). Pseudanal setae $p s_{1}$ about 4.7 (3.5$4.7) \times$ length of $p s_{2}, 198$ (133-198) long, $p s_{2} 2.3$ (2.3$2.4) \times$ length of $p s_{3}, 42(31-42)$ long, $p s_{3} 18(16-18) ; p s_{2}$
$p s_{2} 0.7(0.7-1.0) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 35(34-47)$, $p s_{2}-p s_{2} 26$ (26-38).
Legs. Leg I. 255 (243-255) long; femur I 75 (61-75), $v F$ simple, 52 (40-52) long; genu I 50 (38-50), $\sigma^{\prime} 75$ (46-75), $\sigma " 43$ (25-43), I σ ': $\sigma "=1.7$ (1.7-2.0), $c G 44$ (38-44), $m G$ 63 (47-63); tibia I 35 (29-35), $\varphi 145$ (113-145), gT 38 (27-38), hT 46 (34-46); tarsus I 107 (87-107) long, 31 (22-31) wide, ω_{1} stout and clavate, 21 (16-21) long, $\varepsilon 5$ (3-5), $\omega_{2} 7.5(7.5-9), \omega_{3} 33(28-33)$, distance between $a a$ and ω_{1} about 16 (10-16), aa 32 (23-32) long, ba 37 (2937), wa 62 (48-62), ra 43 (39-43), la 32 (30-32), d 45 (40-45), e 12 (11-12), f 21 (17-21), s 8 (7-8), u and $v 7$ (7-8), p and $q 9$ (8-9), empodium 16 (15-17), claw 21 (18-21). Leg II. 242 (207-242) long; femur II 63 (5863), $v F 72$ (58-72); genu II 48 (36-48), б 33 (24-33), $c G$ 43 (33-43), $m G 54$ (40-54); tibia II 35 (28-35), 甲 164 (128-164), gT 30 (23-30), hT 45 (33-45); tarsus II 102 (82-102) long, $30(21-30)$ wide, ω strong and clavate, 21 (17-21) long, ba 35 (30-35), wa 71 (46-71), ra 47 (3547), la 25 (25-28), d 43 (36-43), e 10 (9-10), f 22 (1722), $s 9$ (7-9), u and $v 8$ (8-10), p and $q 9$ (8-9), empodium 15 (15-17), claw 22 (18-22). Leg III. 245 (231-245) long; femur III 50 (47-50); genu III 39 (38-39), $\sigma 27$ (2027), $n G 61$ (46-61); tibia III 33 (30-33), 甲 115 (115116), kT 50 (38-50); tarsus III 154 (98-154) long, 24 (15-24) wide, w spiniform, 42 (33-42) long, r setiform, 31 (30-31) long, $d 35$ (29-35), e 8 (7-8), f41 (23-41), s 8 (7-8), u 7 (7-7.5), v 8 (8-8.5), p and $q 5$ (5-5.5), empodium 15, claw 17 (15-17). Leg IV. 293 (253-293) long; femur IV 63 (51-63), wF 45 (32-45); genu IV 50 (45-50); tibia IV 42 (33-42), $\varphi 129$ (108-129), kT 43 (33-43); tarsus IV 125 (108-125) long, 25 (16-25) wide, w and r situated anteriorad of or close to distal sucker, w spiniform, 40 (29-40) long, r spiniform, 22 (22-23) long, distances between basal rim of tarsus IV and proximal sucker $d 25$ (24-25), between d and $e 20(20-22)$, between e and $f 56$ (44-56), ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=0.8(0.8-1.1), f 33(27-33)$ long, $s 9$ (7-9), u and $v 8$ (7-9), p and $q 4$ (4-5), empodium 15, claw 17 (15-17).
EGG (Fig. 98). Elongate-oval in shape; shell of newly formed egg smooth, with patches of tubercles in partially developed egg; fully developed egg ornamented with banded tubercles.
Distribution. BASED ON MATERIAL EXAMINED: New Zealand: AK, TK, HB, WA, WN / NN, MB, MC, DN. Australia, Netherlands, South Africa, U.K.

BASED ON LITERATURE: Australia (Robertson 1959; Halliday 1998), Belgium (Hughes 1976), China (Li 1999), Germany (Robertson 1959), Faroe Is (Hallas \& Solberg 1989), France (Giustina 1981), Iceland (Hughes 1976), Iran (Hajiqanbar et al. 2002), Italy (Laffi 1980), Japan (Nakao \& Kurosa 1988), Mexico (Estebanes-

Gonzalez \& Rodriguez-Navarro 1991), Netherlands (Hughes 1976), New Zealand (Robertson 1959, Ramsay \& Paterson 1977), Romania (Cindea 1978), Sweden (Bostrom et al. 1997), U.K. (Robertson 1959), U.S.A. (Walter et al. 1986), Yemen (Al-Safadi 1987).
Material examined. 345 non-type specimens - see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: acorns (Quercus sp.), agricultural soil, barn dust, bean plumules, cucumber, dahlia, garlic, Kiwifruit, Lilium bulbs, maize, melon, melon seed-beds, moss, mushrooms, Narcissus bulbs, orchid, pasture, pumpkin, rotten straws of rice, sandy soil in pots of Rama ryegrass, seeds and debris from tent, spinach, spinach buds, stored hay, sugarbeet fields, tea-tree scrub.

ANIMAL OR ANIMAL PRODUCTS: bat debris, black backed gull colony nests and debris, dead Rhopoea larva [grub], larva of Zenarge turneri, nematode culture, nematode (Heterodera avenae), nests of sea birds, nest of Sturnus vulgaris, Norway rat (Rattus norvegicus), Polynesian rat (Rattus exulans), rabbit (Oryctolagus cuniculus), white heron Egretta alba modesta.
Remarks. Other synonyms of Tyrophagus similis Volgin, 1949 listed by Robertson (1959) are:
Tyroglyphus dimidiatus forma infestans (Berlese, 1884); Oudemans, 1924: 269.
Tyrophagus infestans Berlese, 1884; Oudemans, 1926: 144.
Tyroglyphus dimidiatus Hermann (longior Gervais); Jary \& Stapley, 1937: 119; van den Bruel, 1940: 87.
Tyrophagus dimidiatus var. dimidiatus (Hermann, 1804); Nesbitt, 1945: 155.
Tyrophagus dimidiatus (Hermann, 1804); Baker \& Wharton, 1952: 335.
Tyrophagus humerosus (Oudemans, 1923); Zakhvatkin, 1941: 106; Sorokin, 1952: 545.

Tyrophagus vanheurni Oudemans

Fig. 99-108, Plates 3B, 5J, 8B, 12B, 14J, 15J, 18A, 20I, 23A, 27D, 30I, 31I, 34A
Tyrophagus vanheurni Oudemans, 1924c: 326.
Tyrophagus palmarum Oudemans; Robertson, 1959: 169 (misidentification).
Tyrophagus longior (Gervais, 1844); Robertson, 1946: 198 (misidentification).
Diagnosis. Female. Eyespots absent; scx thin, tapering from base to tip, with $14(10-16)$ short pectinations; d_{l} about $2.6(2.5-2.7) \times$ length of c_{1} and $2.4(2.4-3.1) \times$ length of d_{2}, d_{2} about $0.9(0.8-1.1) \times$ length of c_{1}; coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II not extending posteriorly beyond apex of apodeme II, with posterior margin strongly sinuous. Spermathecal duct cylindrical tube, widening slightly as
it reaches base of spermathecal sac, about $3.6(3.2-5.2) \times$ distance between sclerites of oviducts, base of spermathecal sac bending slightly backwards. Tarsus I ω_{1} and tarsus II ω 'banana'-shaped, i.e. medially widened and tapering at base and apex; setae w and r of tarsus IV setiform.

Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about 2.7 (2.6-3.1) \times length of c_{1} and 3.4 $(2.9-3.9) \times$ length of $d_{2} ; d_{2}$ about $0.8(0.8-0.9) \times$ length of c_{1}; aedeagus with one curve, distal end straight, tapering from base to tip, internal diameter linear, slightly broad near apex, lateral arms supporting aedeagus turning inwards; setae w and r of tarsus IV setiform, situated anteriorad of distal sucker; ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=1.2$ (1.1-1.4).
Description. Female (Fig. 99-102, Plates 3B, 5J, 8B, 12B, 14J, 15J)
Idiosoma. 466 (402-516) long, 297 (246-348) wide. Chelicera 97 (85-98) long, cheliceral seta cha conical, 6(6-7) long, subcapitular setae $m 41$ (34-42), palpal supracoxal seta elcp 12 (12-13) long, dorsal palptibial seta 24 (2325), lateral palptibial seta 18 (14-19), dorsal palptarsal seta 12 (11-13), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins concave, 76 (71-76) long, 101 (87-102) wide between ve-ve. Eyespots absent. Grandjean's organ finger-like, 18 (1518) long, with 1-2 proximal and 1 basal spiniform teeth. Supracoxal seta scx slender, tapering from base to tip, with 14 (10-16) short pestinations, 37 (32-38) long. Ratios: $v i: v e=1.8$ (1.8-1.9), sci: $s c e=1.5$ (1.4-1.6), scisci: $s c i-$ sce $=1.5$ (1.2-1.7). Lengths of setae: vi 87 (87111), ve 51 (38-51), sci 206 (168-224), sce 137 (118148); distances: vi-vi 15 (11-15), vi-ve 47 (38-48), scisci 43 (33-44), sci-sce 29 (26-30). Hysterosomal setae d_{1} about $2.6(2.5-2.7) \times$ length of c_{1} and $2.4(2.4-3.1) \times$ length of d_{2}, d_{2} about $0.9(0.8-1.1) \times$ length of c_{1}; lengths of setae: $c_{1} 36(30-51), c_{2} 224(174-238), c_{p} 185$ (138189), $c_{3} 41$ (29-41), $d_{1} 94$ (83-132), $d_{2} 40$ (26-45), $e_{1} 341$ (275-353), $e_{2} 235$ (185-254), $f_{2} 304$ (276-399), $h_{1} 337$ (298-363), $h_{2} 319$ (286-366), $h_{3} 301$ (246-322); distances: $c_{1}-c_{1} 108(86-127), c_{1}-d_{1} 43(41-55), d_{1}-d_{1} 36(35-55)$, $d_{2}-g l a ~ 65(50-78), d_{1}-e_{1} 119$ (86-133), $e_{1}-e_{1} 112$ (84125). Venter. Coxal plates I reaching to posterior apex of prosternal apodeme; coxal plates II not extending beyond apex of apodeme II, with posterior margin strongly sinuous. Setae la $0.8(0.8-0.9) \times$ length of coxal plate II, 39 (37-45) long, $3 a 18$ (18-27); $3 b 1.6(1.6-2.5) \times$ length of $3 a$, 43 (43-49); g 18 (18-21), 4a 79 (69-83). Pseudanal setae $p s_{1} 1.4(1.4-1.7) \times$ as long as $p s_{2}$, 221 (205-234) long, $p s_{2} 6.7$ (5.7-6.7) \times length of $p s_{3}, 167$ (126-167) long, $p s_{3} 25$ (22-25). Adanal setae $a d_{1} 15$ (14-17), ad 17 (15$17), \mathrm{ad}_{3} 15(12-16)$. Copulatory opening $11(10-15)$ in diameter, spermathecal duct a cylindrical tube, slighly
widening slightly toward base of spermathecal sac, about $3.6(3.2-5.2) \times$ distance between sclerites of oviducts, base of spermathecal sac bending slightly backwards, distance between sclerites of oviducts 12 (12-18).
Legs. Leg I. 209 (183-209) long; femur I 56 (47-56), $v F$ simple, 57 (44-60) long; genu I 32 (31-33), $\sigma^{\prime} 45$ (38-48), $\sigma^{\prime \prime} 21$ (18-24), $\sigma^{\prime}: \sigma^{\prime \prime}=2.2(2.1-2.4), c G 36(31-39), m G$ 38 (38-51); tibia I 29 (27-30), ழ 137 (101-137), gT 29 (29-32), hT 34 (31-34); tarsus I 79 (71-82) long, 26 (1826) wide, ω_{1} shrink at base and apex, 19 (16-20) long, $\varepsilon 5$ (4-5), $\omega_{2} 6(4-6), \omega_{3} 35$ (23-30), distance between $a a$ and ω_{1} about 11 (11-13), aa 24 (17-24) long, ba 21 (20-24), wa 36 (35-41), ra 28 (28-30), la 21(17-21), d 33 (2737), e 7 (6-7), $f 16$ (16-21), $s 6$ (5-6), u and $v 6$ (5-6), p and $q 7$ (6-7), empodium 13 (11-13), claw 16 (13-17). Leg II. 195 (177-198) long; femur II 54 (48-56), $v F 71$ (53-73); genu II 33 (32-33), $\sigma 18$ (16-22), $c G 34$ (2538), $m G 49$ (36-43); tibia II 29 (25-30), $\varphi 143$ (127143), gT 28 (25-30), hT 34 (25-36); tarsus II 79 (70-80) long, 22 (17-23) wide, ω slightly shrink at base and apex, 21 (17-22) long, ba 25 (20-24), wa 37 (32-44), ra 35 (27-36), la 23 (21-23), d37 (32-37), e 7 (6-7), f 17 (1517), $s 6$ (5-6), u and $v 6$ (5-6), p and $q 7$ (6-7), empodium 13 (12-13), claw 18 (15-18). Leg III. 220 (175-222) long; femur III 43 (40-44); genu III 34 (31-36), $\sigma 13$ (1416), $n G 65$ (53-66); tibia III 30 (25-30), $\varphi 151$ (127156), kT 46 (43-62); tarsus III 90 (78-90) long, 19 (1519) wide, w setiform, 35 (31-37) long, r setiform, 24 (2124) long, $d 31$ (20-31), e 7 (6-7), f25 (21-32), s 6 (5-7), $u 5$ (5-6), $v 6$ (6-7), p and $q 3$ (3-3.5), empodium 15 (1115), claw 13 (12-13). Leg IV. 227 (206-242) long; femur IV 47 (34-48), $w F 46$ (35-48); genu IV 41 (35-41); tibia IV 37 (30-33), 甲 115 (101-122), kT 43 (35-52); tarsus IV 88 (85-101) long, 15 (14-19) wide, w setiform, 33 (29-50) long, r setiform, 15 (15-22) long, $d 42$ (32-44), e 6 (6-7), $f 29$ (23-33), $s 6$ (5-7), $u 5$ (5-6), $v 6$ (6-7), p and $q 3$ (3-3.5), empodium 12 (9-12), claw 14 (12-15).
Male (Fig. 103-108, Plates 18A, 20I, 23A, 27D, 30I, 31I, 34A)
Idiosoma. 342 (332-406) long, 234 (208-253) wide. Chelicera 80 (70-85) long, cheliceral seta cha conical, 6 (5-6) long, subcapitular setae $m 31$ (29-33), palpal supracoxal seta elcp 11 (11-12) long, dorsal palptibial seta 24 (1826), lateral palptibial seta 18 (11-18), dorsal palptarsal seta 16 (11-17), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield as in female, 63 (59-70) long, 82 (74-86) wide between ve-ve. Eyespots absent. Grandjean's organ as in female, 15 (14-16) long; supracoxal seta scx slender, tapering from base to tip, with 12 (10-12) pectinations. Ratios: vi: ve $=2.2(2.2-2.5)$, sci: sce $=1.7(1.5-1.7)$, scisci: sci-sce $=1.2$ (1.1-1.2). Lengths of setae: vi 78 (7890), ve 35 (35-46), sci 173 (152-191), sce 101 (101-
107); distances: vi-vi 10 (8-10), vi-ve 36 (32-38), scisci 29 (25-30), sci-sce 24 (21-25). Hysterosomal setae d_{1} about $2.7(2.6-3.1) \times$ length of c_{1} and $3.4(2.9-3.9) \times$ length of $d_{2} ; d_{2}$ about $0.8(0.8-0.9) \times$ length of c_{1}; lengths of setae: $c_{1} 29$ (26-35), $c_{2} 189$ (162-226), $c_{p} 143$ (135152), $c_{3} 27$ (26-34), $d_{1} 78$ (68-110), $d_{2} 23$ (23-28), $e_{1} 278$ (222-278), $e_{2} 190$ (129-224), $f_{2} 299$ (226-299), $h_{l} 287$ (247-288), $h_{2} 331$ (275-331), $h_{3} 266$ (169-266); distances: $c_{1}-c_{1} 88$ (79-90), $c_{1}-d_{1} 36$ (36-55), $d_{1}-d_{1} 37$ (35-37), $d_{2}-$ gla 35 (27-40), $d_{1}-e_{1} 78$ (70-103), $e_{1}-e_{1} 93$ (76-95). Venter. Shape of coxal plates I and II as in female. Setae $1 a 0.8$ (0.8-0.9) \times length of coxal plate II, 31 (30-37); 3a 18 (1418); $3 b 2.3$ (2.3-2.7)× length of $3 a, 42$ (36-42); $g 13$ (1315), $4 a 57$ (57-76). Aedeagus with one curve, distal end straight, tapering from base to tip which is truncated, 16 (14-17) long, internal diameter linear, slightly broad near apex; lateral arms supporting aedeagus turning inwards. Anal slit 58 (59-63) long, distance between anterior rim of anal slit and posterior margin of aedeagus 8 (4-8). Anal suckers about 25 (19-30) in diameter; anal discs 4 in diameter, distances between right and left discs 37 (2337). Pseudanal setae $p s_{l}$ about 5.8 (2.2-6.3) \times length of $p s_{2}, 193$ (164-193) long, $p s_{2} 2.4$ (2.1-4.1)× length of $p s_{3}$, 33 (27-57) long, $p s_{3} 14$ (13-17); $p s_{2}-p s_{2} 1.0(1.0-1.1) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 32$ (30-32), $p s_{2}-p s_{2} 31$ (29-31). Legs. Leg I. 168 (156-183) long; femur I 39 (39-45), $v F$ simple, 43 (42-46) long; genu I 27 (27-33), $\sigma^{\prime} 36$ (28-40), $\sigma^{\prime \prime} 17$ (13-18), I $\sigma^{\prime}: \sigma^{\prime \prime}=2.1$ (2.1-2.7), $c G 30$ (30-33), $m G$ 40 (34-45); tibia I 23 (23-30), 甲 102 (102-106), gT 27 (21-35), hT 28 (23-34); tarsus I 63 (60-68) long, 20 (1521) wide, shape of ω_{1} as in female, 15 (15-16) long, $\varepsilon 3, \omega_{2}$ $4, \omega_{3} 23$ (22-25), distance between $a a$ and ω_{1} about 8 ($8-$ 10), aa 8 (8-10) long, ba 19 (14-20), wa 35 (31-40), ra 22 (22-25), la 17 (17-20), d27 (26-31), e 7,f 15 (14-16), $s 5$ (5-5.5), u and $v 5$ (5-5.5), p and $q 6$ (5-6), empodium 10 (10-11), claw 10 (10-15). Leg II. 160 (142-181) long; femur II 39 (39-43), $v F 59$ (53-63); genu II 28 (28-32), σ 15 (13-17), cG 31 (29-32), $m G 41$ (34-41); tibia II 21 (21-25), $\varphi 118$ (107-129), gT 19 (19-25), hT 26 (23-30); tarsus II 62 (57-70) long, 18 (16-20) wide, ω as in female, 15 (15-17) long, ba 21 (18-23), wa 31 (30-35), ra 25 (20-28), la 14 (14-18), d 22 (22-29), e 7 (6-7), f 13 (1217), $s 5$ (5-5.5), u and $v 5$ (5-5.5), p and $q 6$ (6-7), empodium 10, claw 13 (12-15). Leg III. 178 (163-186) long; femur III 35 (35-38); genu III 26 (26-33), $\sigma 18$ (1220), $n G 50$ (45-51); tibia III 23 (22-26), $\varphi 119$ (116128), kT 36 (36-45); tarsus III 76 (70-83) long, 15 (1215) wide, w setiform, 27 (23-28) long, r setiform, 21 (2025) long, $d 25$ (20-26), 7 (6-7), $f 24$ (18-24), $s 5$ (5-5.5), $u 4$ (4-5), v6 (5-6), p and $q 3$ (3-3.5), empodium 10 (1011), claw 12 (11-14). Leg IV. 185 (178-201) long; femur IV 37 (36-42), wF 33 (29-39); genu IV 30 (30-32); tibia

IV 26 (25-31), $\varphi 91$ (89-113), kT 33 (26-36); tarsus IV 75 (73-82) long, 15 (14-15) wide, w and r situated anteriorad of distal sucker, w setiform, 30 (22-32) long, r setiform, 22 (13-22) long, distances between basal rim of tarsus IV and proximal sucker $d 16$ (14-17), between d and e $16(15-18)$, between e and $f 27(25-30)$, ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=1.2$ (1.1-1.4), f33(21-33) long, $s 5(5-6), u 4$ (4-5), $v 6$ (5-6), p and $q 3$ (3-4), empodium 11 (10-11), claw 12 (11-13).
Distribution. BASED ON MATERIAL EXAMINED: New Zealand: KE / ND, AK, CL, WO, BP, TO, TK, HB, WI, WN / MC, SI / AU. Australia, Netherlands, Tuvalu, U.K.

BASED ON LITERATURE: Netherlands (Oudemans 1924c).
Material examined. Lectotype and 203 non-type specimens - see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: coconut, Capsicum frutescens in glasshouse, injured living Macadamia husk, pollen from beehive.

ANIMAL OR ANIMAL PRODUCTS: cheese, dead fruit flies, dead house-fly, dead Rattus exulans, dead Rattus norvegicus, debris in collection of Culex antipodeus, honeybee, Mus musculus, Orthodera ministralis ootheca on male scale insect, Rattus exulans, Rattus norvegicus, Rattus rattus, short-tailed bat, sphecids stick-trap, Welsh cheddar cheese in store.
Remarks. This species is similar to T. palmarum Oudemans in lacking eyespots, having slender $s c x$, spermathecal duct cylindrical in female, lateral arms supporting aedeagus turning inwards in male, and position of setae w and r on tarsus IV (male), but differs from the latter in having ω_{1} of tarsus I 'banana'-shaped rather than clavate and aedeagus short rather than long.

Tyrophagus vanheurni has been considered an invalid name since 1959. In her remarkable revision Robertson (1959) concluded that T. vanheurni had no status because "Oudemans' specimens are a mixture of palmarum and putrescentiae". She designated a lectotype male so that it could be listed as a synonym of T. putrescentiae. We examined two slides from Oudemans collection in RMNH labelled "Tyrophagus vanheurni Oudemans 1924, ㅇ dors., vent., ơ dors., vent., No. 6, P6993, in cocosnoot, Twello, 10.3.1924, Jhr. W.C. van Heurn, J.G. Betrem donavit" (as lectotype) and "Tyroglyphus vanheurni Oudems. 1924, \&, No. 4, P6991, in een cocosnoot, Twello, Maart 1924, Jhr. W.C. van Heurn", repectively, and found both were in very poor condition. After remounting the second slide (No. 4, P6991) 27 females were separated and re-mounted individually on 27 slides which made it possible to carry
out a detailed study of these specimens, which we have done. We consider that the specimens on the two slides are conspecific and represent a taxon distinct from T. putrescentiae or T. palmarum.

Re-examination of Robertson's specimens including both sexes (P.L.R. Var. Ser. III, Nos. 83, 84, P.L.R. Var. Ser. III, Nos. 7, 8) in ANIC indicates that she misidentified T. vanheurni as T. palmarum.

AUSTRALASIAN AND OCEANIAN SPECIES NOT PRESENTIN NEW ZEALAND

This Fauna of New Zealand contribution provides mainly an account of New Zealand species of Tyrophagus. However, most New Zealand species are shared with Australia and this project was originally initiated as a taxonomic revision of Australasian species to help identification of mites intercepted on imported/exported products between countries. For this purpose, we also provide an account of other Australasian and Oceanian species that are likely to be intercepted at the border in New Zealand but are not present in New Zealand.

Tyrophagus australasiae (Oudemans)

Fig. 109-118, Plates 18B, 20J, 23B, 27E, F, 30J, 31J, 34B
Tyroglyphus australasiae Oudemans, 1916: 267.
Tyrophagus australasiae (Oudemans); Robertson, 1959: 161.
Tyrophagus putrescentiae (Oudemans); Samšióák, 1962: 268.
Tyrophagus javensis (Oudemans); Robertson, 1959: 164
(misidentification); Samšiòàk, 1962: 272; Fain, 1993: 99.

Diagnosis. Male (Lectotype) (Slide No.8, P6921). Eyespots present; scx slightly widened where bases of pectinations begin, with $8-9$ medium or short pectinations; d_{1} about $3.4(2.7-3.4) \times$ length of c_{1} and $2.6(2.5-2.6) \times$ length of $d_{2} ; d_{2}$ about $1.3(1.1-1.3) \times$ length of c_{l}; coxal plates I extending slightly beyond apex of prosternal apodeme; coxal plates II triangular, extending posteriorly beyond apex of apodeme II, with posterior margin almost straight; aedeagus with two obvious curves, S-shaped, distal $1 / 3$ reversely curved, tapering from base to tip, internal diameter linear, lateral arms supporting aedeagus turning outwards; ω_{1} of tarsus I slightly clavate, tarsus II ω nearly cylindrical; setae w and r of tarsus IV setiform; ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=2.5$.
Description. Male (P6921; Fig. 109-113, Plates 18B, 20J, 23B, 27E, 30J, 31J, 34B)
Idiosoma. 430 (359-430) long, 277 (228-277) wide. Che-
licera 82 (68-82) long, cheliceral seta cha conical and distally pointed, 5 long, subcapitular setae $m 32$ (27-32); palpal supracoxal seta elcp 10 (8-10) long, dorsal palptibial seta 21 (20-21), lateral palptibial seta 13 (11-13), dorsal palptarsal seta 12 (10-12), palptarsal solenidion 3 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins strongly concave and posterolateral margins slightly concave; $70(62-70)$ long, 75 (66-75) wide between ve-ve. Eyespots present. Grandjean's organ fingerlike, smooth, its basal lobe with $2-3$ spiniform teeth. Supracoxal seta scx slender, slightly widened at bases of pectinations, with 8-9 long or short pectinations, 37 (2937) long. Ratios: $v i$: $v e=1.6(1.6-2.0)$, sci: $s c e=2.0$ (1.92.0), sci-sci: $s c i-s c e=1.3$ (0.9-1.3). Lengths of setae: $v i$ 87 (77-87), ve 53 (39-53), sci 180 (151-180), sce 92 (81-92); distances: vi-vi 13 (11-13), vi-ve 32 (27-32), sci-sci 25 (21-25), sci-sce 20 (20-23). Hysterosomal setae d_{1} about $3.4(2.7-3.4) \times$ length of c_{1} and 2.6 (2.5$2.6) \times$ length of $d_{2} ; d_{2}$ about $1.3(1.1-1.3) \times$ length of c_{1}; lengths of setae: $c_{1} 32$ (28-32), $c_{2} 200$ (172-200), $c_{p} 167$ (138-167), $c_{3} 42$ (36-42), $d_{1} 108$ (76-108), $d_{2} 42$ (3142), $e_{1} 292$ (263-292), e 205 (171-205), $f_{2} 285$ (263285), $h_{1} 298$ (278-298), $h_{2} 295$ (279-295), $h_{3} 250$ (235250); distances: $c_{1}-c_{1} 92(80-92), c_{1}-d_{1} 52(43-52), d_{1}-d_{1}$ 42 (38-42), $d_{2}-$ gla 55 (38-55), $d_{1}-e_{1} 62$ (62-71), $e_{1}-e_{1}$ 292 (263-292). Venter. Coxal plates I extending posteromedially beyond posterior apex of prosternal apodeme; coxal plates II broad, extending posteriorly beyond apex of apodeme II, with posterior margin almost straight. Setae $1 a 1.1(1.0-1.1) \times$ length of coxal plate II, $51(43-51)$; $3 a 19$ (19-21); 3b $4.4(2.9-4.4) \times$ length of $3 a, 83(61-83)$; g 20 (18-20), $4 a 80$ (76-80). Aedeagus from ventral view similar to T. communis sp. n.; lateral arms supporting aedeagus turning outwards. Anal slit 65 (61-65) long, distance between anterior rim of anal slit and posterior margin of aedeagus 20 (20-21). Anal suckers about 23 (20-23) in diameter; anal discs 4 in diameter, distance between right and left discs 31 (31-32). Pseudanal setae $p s_{1}$ about $1.8 \times$ length of $p s_{2}, 196(188-196)$ long, $p s_{2} 7.3$ $(7.3-7.8) \times$ length of $p s_{3}, 110(102-110)$ long, $p s_{3} 15$ (1315); $p s_{2}-p s_{2} 2.0(2.0-2.2) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 32$ (25-32), $p s_{2}-p s_{2} 65$ (56-65).
Legs. Leg I. 195 (174-195) long; femur I 50 (43-50), $v F$ simple, 43 (41-43) long; genu I 34 (33-34), $\sigma^{\prime} 35$ (33-35), $\sigma " 23$ (17-23), I $\sigma^{\prime}: \sigma "=1.5$ (1.5-1.9), $c G 39$ (28-39), $m G$ 40 (35-40); tibia I 30 (27-30), 甲 103 (94-103), gT 27 (27-30), hT 32 (30-32); tarsus I 78 (70-78) long, 17 (1617) wide, ω_{1} slightly clavate, 14 long, $\varepsilon 5$ (4-5), $\omega_{2} 7$ (67), $\omega_{3} 20(16-20)$, distance between $a a$ and ω_{1} about 14(11-14), aa 20 (18-20) long, ba 23 (20-23), wa 42 (35-42), ra 30 (26-30), la 20, d 39 (32-39), e 7 (6-7), f13 (10-13), $s 5$ (4-5), u and $v 5(4-5), p$ and $q 7$ (6-7),
empodium 14 (12-14), claw 13 (12-13). Leg II. 190 (171190) long; femur II 48 (40-48), $v F 59$ (49-59); genu II 37 (30-37), $\sigma 16$ (13-16), cG 31 (30-31), $m G 41$ (32-41); tibia II 26, $\varphi 93$ (86-93), gT 30 (26-30), hT 35 (30-35); tarsus II 75 (66-75) long, 15 ($14-15$) wide, ω nearly cylindrical, 16 (15-16) long, ba 21 (18-21), wa 41 (3541), ra 32 (27-32), la 22 (20-22), d 34 (29-34), e 7 (6-7), $f 16(14-16), s 5(4-5), u$ and $v 5(4-5), p$ and $q 7(6-7)$, empodium 14 (12-14), claw 12 (11-12). Leg III. 207 (196-207) long; femur III 42 (37-42); genu III 33 (2833), $\sigma 17$ (14-17), $n G 52$ (41-52); tibia III 28 (26-28), φ 102 (92-102), kT 43 (41-43); tarsus III 86 (73-86) long, 14 (13-14) wide, w setiform, 34 (31-34), r setiform, 29 (26-29), d32 (30-32), e 6,f27 (23-27), s5 (4-5), u 4 (44.5), $v 5$ (5-5.5), p and $q 2$, empodium 14 (12-14), claw 12 (11-12). Leg IV. 222 (202-222) long; femur IV 45 (41-45), wF 46 (33-46); genu IV 36 (34-36); tibia IV 33 (30-33), $\varphi 95$ (89-95), kT 36 (35-36); tarsus IV 81 (7781) long, 13 (12-13) wide, w and r situated at level between suckers, w setiform, 32 (31-32) long, r setiform, $12(11-12)$ long, distances between basal rim of tarsus IV and proximal sucker $d 28(26-28)$, between d and $e 21$ (17-21), between e and $f 20(18-20)$, ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=2.5$, $f 28$ (22-28) long, $s 4$ (4-5), $u 4, v 5$ (5-5.5), p and $q 2$, empodium 13 (12-13), claw 12 (11-12).
Male (P6610; Fig. 114-118, Plate 27F)
Idiosoma. 257 long, 147 wide. Chelicera 57 long, cheliceral seta cha conical and distally pointed, 3 long, subcapitular setae m 22; palpal supracoxal seta elcp 9 long, dorsal palptibial seta 14 , lateral palptibial seta 8 , dorsal palptarsal seta 7, palptarsal solenidion 3. Dorsum. Prodorsal shield nearly pentagonal, its lateral margins strongly concave and posterolateral margins slightly concave; 49 long, 57 wide between ve-ve. Eyespots present. Grandjean's organ finger-like, smooth, its basal lobe with 2-3 spiniform teeth. Supracoxal seta $s c x$ moderately widened at bases of pectinations, with $8-10$ long or short pectinations, 23 long. Ratios: $v i$: $v e=1.5$, sci: $s c e=2.0, s c i-s c i: s c i-s c e=$ 1.4. Lengths of setae: vi 51 , ve 33 , sci 106 , sce 52 ; distances: vi-vi 8, vi-ve 24, sci-sci 23, sci-sce 17 . Hysterosomal setae d_{1} about $1.6 \times$ length of c_{1} and $2.0 \times$ length of $d_{2} ; d_{2}$ about $0.8 \times$ length of c_{1}; lengths of setae: c_{1} $65, c_{2} 103, c_{p} 94, c_{3} 26, d_{1} 42, d_{2} 21, e_{1} 194, e_{2} 132, f_{2} 222$, $h_{1} 247, h_{2} 212, h_{3} 184$; distances: $c_{1}-c_{1} 65, c_{1}-d_{1} 34, d_{1}-d_{1}$ 22, $d_{2}-$ gla $34, d_{1}-e_{1} 53, e_{1}-e_{1} 52$. Venter. Coxal plates I extending postero-medially beyond posterior apex of prosternal apodeme; coxal plates II broadly triangular, extending posteriorly beyond apex of apodeme II, with posterior margin very slightly concave. Setae $1 a 0.9 \times$ length of coxal plate II, $27 ; 3 a 16 ; 3 b 2.6 \times$ length of $3 a, 41$ long; $g 15,4 a 42$. Aedeagus tapering from base to tip, with two obvious curves, S-shaped, distal $1 / 3$ reversely
curved, internal diameter linear, 16 long; lateral arms supporting aedeagus turning outwards. Anal slit 44 long, distance between anterior rim of anal slit and posterior margin of aedeagus 13. Anal suckers about 14 in diameter; anal discs 3 in diameter, distance between right and left discs 20 . Pseudanal setae $p s_{1}$ about $1.9 \times$ length of $p s_{2}, 119$ long, $p s_{2} 5.6 \times$ length of $p s_{3}, 62$ long, $p s_{3} 11 ; p s_{2}-p s_{2} 2.4 \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 15, p s_{2}-p s_{2} 36$.
Legs. Leg I. 141 long; femur I 35, $v F$ simple, 32 long; genu I 27, $\sigma^{\prime} 28, \sigma^{\prime \prime} 16$, I $\sigma^{\prime}: \sigma^{\prime \prime}=1.8, c G 28, m G 36$; tibia I $22, \varphi 82, g T 23, h T 34$; tarsus I 56 long, 14 wide, ω_{1} obviously clavate, 13 long, $\varepsilon 3, \omega_{2} 5, \omega_{3} 11$, distance between $a a$ and ω_{1} about 8 , aa 14 long, ba 21, wa 27, ra 16 , la 13, $d 17, e 5, f 8, s 5, u$ and $v 3, p$ and $q 5$, empodium 13, claw 11. Leg II. 128 long; femur II 33, $v F 29$; genu II 24, $\sigma 11, c G 26, m G 32$; tibia II 20, $\varphi 77, g T 21, h T 26$; tarsus II 50 long, 11 wide, ω slightly clavate, 14 long, ba 12 , wa 25, ra 19, la 16, $d 15$, e 5,f8,s 4, u and $v 3, p$ and $q 4$, empodium 10, claw 10. Leg III. 124 long; femur III 25; genu III 23, $\sigma 110, n G 33$; tibia III 18, $\varphi 93$, $k T 32$; tarsus III 56 long, 11 wide, w setiform, $20, r$ setiform, $12, d 16$, $e 5, f 13, s 4.5, u 3, v 4.5, p$ and $q 1$, empodium 11, claw 10. Leg IV. 160 long; femur IV 31, wF27; genu IV 24; tibia IV 23, φ 91, $k T$ 26; tarsus IV 63 long, 10 wide, w and r situated at level between suckers, w setiform, 24 long, r setiform, 12 long, distances between basal rim of tarsus IV and proximal sucker $d 19$, between d and $e 17$, between e and $f 16$, ratio (a+b): c $=2.3, f 16$ long, $s 4, u 3, v 3.5, p$ and $q 2$, empodium 10, claw 9 .

Distribution. BASED ON MATERIAL EXAMINED:

Indonesia.
BASED ON LITERATURE: Indonesia (Oudemans 1916).
Material examined. Lectotype and 4 non-type specimens - see Appendix 1 for details of specimens examined.

Habitat and host. ANIMAL OR ANIMAL PRODUCTS: eggs of ant (Plagiolepis longipes Jerd.), crowned pigeon (Goura sp.).
Remarks. The lectotype male of Tyrophagus australasiae (No. 8, P6921) is similar to T. communis sp. n. in eyespots, ω_{1} of tarsus I and ω of tarsus II, lateral arms supporting aedeagus, position of suckers of tarsus IV, and coxal plates II, but differs from the latter in shaft of supracoxal setae being slender and with less (8) pectinations (Fig. 111) rather than obviously widened at bases of pectinations and with more (13-16) pectinations (Fig. 3). Further distinguishing characters are unavailable because aedeagus of the lectotype male of this species is folded dorsoventrally and female is unknown.

Males on slide No. 6, P6610 were misidentified as T. javensis (Oudemans) by Robertson (1959) and Samšiòák
(1962) (discussed below in T. javensis) probably because the slide has the same collection data with the female of T. javensis. These males are very similar to those of T. communis $\mathbf{s p} . \mathbf{n}$. in almost every aspect, such as eyespots, shape of scx and aedeagus, position of setae and suckers on tarsus IV, except the shape of solenidion ω_{1} on tarsus I (Fig. 117). Due to the complexity of the genus we tentatively retain these males in T. australiae until females are discovered.

Tyrophagus javensis (Oudemans)

Fig. 119-128, Plates 3C, 5K, 8C, 12C, 14K, 15K, 18C, $20 \mathrm{~K}, 23 \mathrm{C}, 28 \mathrm{~A}, \mathrm{~B}, 30 \mathrm{~K}, 31 \mathrm{~K}, 34 \mathrm{C}$
Tyroglyphus javensis Oudemans, 1916: 267.
Diagnosis. Female. Eyespots absent; scx slightly or moderately widening where bases of pectinations begin, pectinations 6-8, moderate or short; d_{1} about 5.3 (2.5$5.3) \times$ length of c_{1} and $4.3(2.3-4.3) \times$ length of $d_{2} ; d_{2}$ about $1.0(1.0-1.2) \times$ length of c_{1}; coxal plates I extending postero-medially beyond apex of prosternal apodeme, posterior margin sinuous; coxal plates II triangular, extending posteriorly beyond apex of apodeme II, with $2 / 3$ of posterior margin strongly concave. Spermathecal duct narrowing rapidly from copulatory opening for a distance about 2.7 (2.7-3.1)× distance between sclerites of oviducts and then extending to base of spermathecal sac, more than $4.0(3.7-4.3) \times$ distance between sclerites of oviducts, base of spermathecal sac very small, bending forwards. Tarsus I ω_{1} slender, obviously widened at apex, tarsus II ω slender, slightly widened at apex; seta w of tarsus IV setiform, r of tarsus IV spiniform.
Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about 2.4 (2.4-2.7) \times length of c_{1} and 2.7 $(2.7-2.9) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-1.0) \times$ length of c_{1}; aedeagus very small, with one major curve, distal end short, reversely curved, tapering from base to tip, internal diameter linear, lateral arms supporting aedeagus turning outwards; seta w of tarsus IV setiform, r of tarsus IV spiniform; ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=2.8$.
Description. Female (Fig. 119-123, Plates 3C, 5K, 8C, $12 \mathrm{C}, 14 \mathrm{~K}, 15 \mathrm{~K}$)
Idiosoma. 492 (438-504) long, 301 (288-305) wide. Chelicera 81 (78-82) long, cheliceral seta cha conical, 5 (4-5) long, subcapitular setae $m 37$ (36-39), palpal supracoxal seta elcp 10 (10-11) long, dorsal palptibial seta 21 (1923), lateral palptibial seta 14 (13-14), dorsal palptarsal seta 13 (11-13), palptarsal solenidion 3 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral margins strongly concave and posterolateral margins wavy with an obvious medial lobe; 80 (77-80) long, 91 (85-91) wide between $v e-v e$. Eyespots absent. Grandjean's organ fin-
ger-like (13-14 long), its basal lobe with 3-4 spiniform teeth. Supracoxal seta scx slightly or moderately widened at bases of pectinations, with 6-9 moderate or short pectinations, 33 (30-33) long. Ratios: $v i$: ve $=2.3$ (2.22.3), sci: $s c e=1.8(1.8-2.0)$, $s c i-s c i: s c i-s c e=1.4$ (1.31.4). Lengths of setae: vi 91 (91-93), ve 40 (40-42), sci 205 (199-205), sce 113 (98-113); distances: vi-vi 14 (11-14), vi-ve 40 (38-42), sci-sci 38 (35-38), sci-sce 28 (27-29). Hysterosomal setae d_{1} about $5.3(2.5-5.3) \times$ length of c_{1} and $4.3(2.3-4.3) \times$ length of $d_{2} ; d_{2}$ about $1.0(1.0-$ $1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 21(20-21), c_{2} 108$ (83-108), $c_{p}(158-201), c_{3} 48(25-48), d_{1} 113(51-113)$, $d_{2} 22(22-26), e_{1} 353(315-353), e_{2} 208(186-208), f_{2} 313$ (271-313), h, 335 (311-335), h2 338 (296-338), h 268 (193-268); distances: $c_{1}-c_{1} 105(83-108), c_{1}-d_{1} 60$ (60$63), d_{1}-d_{1} 35(30-35), d_{2}-$ gla $70(70-71), d_{1}-e_{1} 108(90-$ 108), $e_{1}-e_{1} 102(101-102)$. Venter. Coxal plates I extending postero-medially beyond apex of prosternal apodeme, posterior margin sinuous; coxal plates II triangular, extending posteriorly beyond apex of apodeme II, with $2 / 3$ of posterior margin strongly concave. Setae $1 a 1.2(1.1-$ $1.2) \times$ length of coxal plate II, 51 (47-51), $3 a 18$ (18-27); $3 b 3.8(3.2-3.8) \times$ length of $3 a, 69$ (69-87) long; g 22 (2122), $4 a 76$ (76-89). Pseudanal setae $p s_{1} 1.5(1.5-2.7) \times$ as long as $p s_{2}, 221$ (193-268) long, $p s_{2} 6.2$ (2.8-6.2) \times length of $p s_{3}, 143$ (53-143) long, $p s_{3} 19$ (19-23). Adanal setae $a d_{1} 11(10-11), a d_{2} 13(12-13), a d_{3} 11(11-12)$. Copulatory opening 5.3 in diameter, spermathecal duct narrowing rapidly from copulatory opening for a distance about $2.7(2.7-3.1) \times$ diameter of copulatory opening and then extending to base of spermathecal sac, more than 4.0 (3.7$4.3) \times$ distance between sclerites of oviducts, base of spermathecal sac very small, bending forwards, distance between sclerites of oviducts 5.0 (4.5-5.0).
Legs. Leg I. 221 (161-221) long; femur I 54 (45-50), $v F$ simple, 50 (50-52) long; genu I 37 (32-40), σ ' 31 (30-31), $\sigma " 23$ (23-30), I σ ': $\sigma "=1.3$ (1.0-1.3), $c G 36$ (34-36), $m G$ 54 (54-57); tibia I 31 (25-31), $\varphi 113$ (91-113), gT 37 (37-38), hT 49 (44-49); tarsus I 88 (67-88) long, 18 (1821) wide, ω_{1} slender, obviously widened at apex, 18 (1718) long, $\varepsilon 4, \omega_{2} 6(5-6), \omega_{3} 27$ (19-27), distance between aa and ω_{1} about 12 (12-14), aa 24 (23-24) long, ba 25 (25-27), wa 36 (36-43), ra 24 (24-25), la 19 (19-25), d $35(33-35), e 6(6-7), f 14(13-14), s 6(5-6), u$ and $v 4$ (45), p and $q 7$ (7-7.5), empodium 16 (13-16), claw 13 (1314). Leg II. 210 (150-210) long; femur II 52 (45-52), $v F$ 59 (57-59); genu II 38 (38-39), $\sigma 29$ (23-29), cG 33 (3133), $m G 44$ (44-51); tibia II 28 (27-28), 甲 117 (113-117), gT 35 (35-41), hT 38 (37-38); tarsus II 82 (78-82) long, 17 (17-21) wide, ω slender, slightly widened at apex, 24 (22-24) long, ba 24 (24-29), wa 33 (33-47), ra 29 (2935), la 21 (21-24), d 34 (34-36), e 6 (5-6), f 15 (13-15),
$s 5(5-6), u$ and $v 5(4-5), p$ and $q 7$ (7-7.5), empodium 15 (12-15), claw 12 (12-13). Leg III. 212 (152-212) long; femur III 46 (39-46); genu III 36 (34-36), $\sigma 16$ (16-17), $n G 54$ (52-54); tibia III 31 (28-31), 甲 136 (132-136), $k T$ 50 (50-52); tarsus III 84 (84-86) long, 16 (15-16) wide, w setiform, 35 (35-37) long, r setiform, 28 (28-31) long, $d 37$ (32-37), e 6 (5-6), f16(16-20), s 5 (5-6), u 4 (44.5), $v 6$ (5.5-6), p and $q 3$ (3-3.5), empodium 13 (1213), claw 12 (12-13). Leg IV. 242 (178-242) long; femur IV 49 (46-49), wF 49 (48-49); genu IV 41 (38-41); tibia IV 35 (32-35), $\varphi 92$ (92-118), kT 46 (43-46); tarsus IV 94 (89-98) long, 16 (15-16) wide, w setiform, 34 (34-37) long, r spiniform, 16 (16-18) long, $d 35$ (35-38), e 6 (56), $f 16$ (13-16), s 5 (5-6), $u 5$ (4-5), v 6, p and $q 3$, empodium 15 (13-15), claw 12 (12-13).
Male (Fig. 124-128, Plates 18C, 20K, 23C, 28A, B, 30K, 31K, 34C)
Idiosoma. 252 (233-252) long, 153 (136-153) wide. Chelicera 50 (50-52) long, cheliceral seta cha conical, 3.5 (3.5-4) long, subcapitular setae $m 21$ (21-24), palpal supracoxal seta elcp 6(6-7) long, dorsal palptibial seta 12 (12-15), lateral palptibial seta 8 (8-10), dorsal palptarsal seta 7 (7-10), palptarsal solenidion 2 (2-3). Dorsum. Prodorsal shield as in female, 47 (47-48) long, 53 (53-56) wide between $v e-v e$. Eyespots absent. Grandjean's organ and supracoxal seta as in female, scx 17 (17-19) long. Ratios: $v i: v e=1.5(1.5-1.6)$, sci: $s c e=2.3(2.1-2.3)$, sci$s c i$: $s c i-s c e=1.3$ (1.1-1.3). Lengths of setae: $v i 48$ (4852), ve 31 (31-32), sci 135 (124-135), sce 60 (57-60); distances: vi-vi 8 (8-9), vi-ve 23 (23-25), sci-sci 21 (1821), sci-sce 16 (16-19). Hysterosomal setae d_{1} about 2.4 $(2.4-2.7) \times$ length of c_{1} and $2.7(2.7-2.9) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-1.0) \times$ length of c_{1}; lengths of setae: $c_{1} 18$ $(18-19), c_{2} 143(126-143), c_{p} 108(108-116), c_{3} 22(22-$ 24), $d_{1} 43$ (43-52), $d_{2} 16$ (16-18), $e_{1} 235$ (235-244), e_{2} 167 (167-181), $f_{2} 259$ (247-259), $h_{1} 266$ (255-266), h_{2} 259 (259-264), h. 162 (162-174); distances: $c_{1}-c_{1} 56$ (56-58), $c_{1}-d_{1} 33$ (33-34), $d_{1}-d_{1} 18$ (18-21), $d_{2}-$ gla 31 (31-34), $d_{1}-e_{1} 50(49-50), e_{1}-e_{1} 51$ (47-51). Venter. Shape of coxal plates I and II as in female. Setae la 0.7 $(0.7-0.8) \times$ length of coxal plate II, $22(22-26)$ long; $3 a 14$ (12-14); $3 b 1.8(1.8-2.0) \times$ length of $3 a, 25(25-27) ; ~ g 9$ (9-10), 4a 31 (31-33). Aedeagus very small, 12 (12-13) long, with one major curve, distal end short, reversely curved, tapering from base to tip, internal diameter linear; lateral arms supporting aedeagus turning outwards. Anal slit 42 (39-42) long, distance between anterior rim of anal slit and posterior margin of aedeagus 13 (11-13). Anal suckers about 14 (12-14) in diameter; anal discs 3 (2.5-3) in diameter, distances between right and left discs 18 (1820). Pseudanal setae $p s_{1}$ about $2.0(2.0-2.2) \times$ length of $p s_{2}, 134$ (128-134) long, $p s_{2} 6.7(5.9-6.7) \times$ length of $p s_{3}$,

67 (59-67) long, $p s_{3} 10 ; p s_{2}-p s_{2} 2.2(2.1-2.2) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 17$ (16-17), $p s_{2}-p s_{2} 37$ (37-39).
Legs. Leg I. 121 (117-121) long; femur I 30 (28-30), $v F$ simple, 28 (28-30) long; genu I 22 (21-22), $\sigma^{\prime} 23$ (23-24), $\sigma " 23$ (23-24), I σ ': $\sigma "=1.0, c G 17$ (17-20), $m G 24$ (2224); tibia I 18 (18-19), $\varphi 77$ (77-81), gT 23 (23-24), $h T$ 22 (21-22); tarsus I $50(48-50)$ long, $16(15-16)$ wide, ω_{1} obviously clavate, 14 (14-14.5) long, $\varepsilon 3, \omega_{2} 4(4-5), \omega_{3}$ 16 (16-17), distance between $a a$ and ω_{1} about 12 (1012), aa 18 (16-18) long, ba 16 (16-18), wa 30 (29-30), ra 16 (16-18), la 16 (14-16), d 20 (19-20), e 6 (6-7), f 11 $(9-11), s 4$ (4-4.5), u and $v 3$ (3-3.5), p and $q 5$ (5-6), empodium 11 (11-13), claw 9 (9-10). Leg II. 120 (118120) long; femur II $30(28-30), v F 36(33-36)$; genu II 20 (20-21), $\sigma 14$ (13-14), cG 20 (20-23), $m G 26$ (25-26); tibia II 18 (17-18), $\varphi 80$ (80-85), gT 23 (21-23), hT 20 (19-20); tarsus II 47 (47-49) long, 13 (13-15) wide, ω slender and clavate, 14 (14-15) long, ba 16 (15-16), wa 30 (29-30), ra 16 (16-18), la 14 (13-14), d 22 (20-22), e $5(5-6), f 11(10-11), s 4, u$ and $v 3(3-3.5), p$ and $q 3$ (23), empodium 10 (10-11), claw 8 (8-10). Leg III. 117 (117-118) long; femur III 25 (25-27); genu III 20 (2022), $\sigma 8$ (8-9), $n G 32$ (32-34); tibia III 19 (18-19), $\varphi 99$ (99-102), kT 26 (26-30); tarsus III 53 (53-55) long, 12 (12-13) wide, w setiform, 22 (22-24) long, r setiform, 16 (16-17), d 16 (16-19), e 3 (3-4), f 20 (20-23), s 4 (44.5), $u 3,3$ (3-4), p and $q 3$ (2-3), empodium 10, claw 8 (8-9). Leg IV. 142 (137-142) long; femur IV 30 (30-31), $w F 28$ (28-31); genu IV 24 (23-24); tibia IV 20 (20-21), $\varphi 78$ (78-82), kT 27 (27-30); tarsus IV 57 (57-59) long, 11 (11-13) wide, w and r situated at level between suckers, w setiform, 16 (16-18) long, r spiniform, $10(10-11)$ long, distances between basal rim of tarsus IV and proximal sucker $d 17$ (16-17), between d and $e 16$ (16-17), between e and $f 12(12-13)$, ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=2.8, f 14$ long, $s 4$ (4-4.5), u 3, v4 (4-4.5), p and $q 1.5$ (1.5-2), empodium 10 (9-10), claw 8 (8-9).
Distribution. BASED ON MATERIAL EXAMINED: Australia, Ecuador, Indonesia, Panama, Philippines, Singapore, Thailand.
BASED ON LITERATURE: Indonesia (Oudemans 1916).
Material examined. Lectotype and 92 non-type specimens - see Appendix 1 for details of specimens examined.
Habitat and host. PLANT OR PLANT PRODUCTS: banana, bark scrapings, pineapple, water melon.

ANIMAL OR ANIMAL PRODUCTS: workers of ant (Plagiolepis longipes Jerd.).
Remarks. Lectotype female and subsequently discovered females of this species are very similar to those of T. robertsonae Lynch in spermathecal ducts which are of
short length with a small sclerotised base to the spermathecal sac (Fig. 70, 122), ω_{1} on tarsus I and ω on tarsus II being clavate (Fig. 71, 122), but this species differs from the latter in $s c x$ which is expanded where the bases of pectionations begin (Fig. 121) rather than tapering from base to tip (Fig. 70), seta r on tarsus IV being spiniform (Fig. 123) rather than setiform (Fig. 72) and lacking eyespots (Fig. 121) rather than having a pair of faint eyespots (Fig. 70). Subsequently discovered males of T. javensis are also similar to those of T. robertsonae Lynch in having small aedeagus (Fig. 75, 126) and ω_{1} on tarsus I and ω on tarsus II being clavate (Fig. 76, 127), but differ from the latter in shape of scx (Fig. 126) and r (Fig. 128), and lacking eyespots (Fig. 126) as in female. It is obvious that T. javensis (Oudemans) is distinct from males (one of them was designated as lectotype of T. javensis by Robertson, 1959) on slide labelled "Tyroglyphus australasiae Oudemans, o ${ }^{7}$ dors., vent., lat., No. 6, P6610, Op eieren van Plagiolepis longipes (mier), Salatiga, Maart 1915, P.V.D. Goof" in having small aedeagus and seta r on tarsus IV being spiniform. Therefore, Robertson's concept of T. javensis should be abolished and we have rectified this problem in accordance with the rules of the International Code for Zoological Nomenclature.

Tyrophagus pacificussp. n.

Fig. 129-138, Plates 3D, 5L, 8D, 12D, 14L, 15L, 18D, 20L, 23D, 28C, D, 30L, 31L, 34D
Diagnosis. Female. Eyespots present but not prominent; scx moderately or broadly widening where pectinations begin, with $6-10$ long pectinations; d_{1} about $2.9(2.8-2.9) \times$ length of c_{1} and $3.1(2.4-3.1) \times$ length of d_{2}; d_{2} about $0.9(0.9-1.2) \times$ length of c_{1}; coxal plates I just reaching posterior apex of prosternal apodeme; coxal plates II broadly trangular, extending beyond apex of apodeme II, its posterior margin virtually straight. Spermathecal duct narrowing rapidly from copulatory opening for a distance about $2.9(2.7-2.9) \times$ distance between sclerites of oviducts and then extending to base of spermathecal sac over a distance about 3.4 (2.7-3.4) \times distance between sclerites of oviducts, base of spermathecal sac flat. Tarsus I ω_{1} obviously widened at apex, tarsus II ω slightly widened at apex; setae w and r of tarsus IV setiform.

Male. Eyespots, coxal plates I and II, solenidia I ω_{1} and II ω as in female; d_{1} about $3.0(2.5-3.0) \times$ length of c_{1} and 2.8 $(2.8-3.1) \times$ length of $d_{2} ; d_{1}$ about $1.1(0.9-1.1) \times$ length of c_{1}; aedeagus very long, with two obvious curves, S-shaped, distal half reversely curved, tapering from base to tip, internal diameter linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio $(a+b): c=3.4(3.4-3.5)$.

Description. Female (Fig. 129-133, Plates 3D, 5L, 8D, 12D, 14L, 15L)
Idiosoma. 402 (342-402) long, 269 (235-369) wide. Chelicera 85 (80-85) long, cheliceral seta cha conical and with a blunt tip, 5 (5-5.5) long, subcapitular setae $m 35$ (2935); palpal supracoxal seta elcp 10 (10-11) long, dorsal palptibial seta 22 (22-25), lateral palptibial seta 16 (1619), dorsal palptarsal seta 12 (110-12), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral and posterolateral margins slightly concave; 76 (70-76) long, 86 (74-86) wide between ve-ve. Eyespots present but not obvious. Grandjean's organ fin-ger-like, 12 (12-13) long, its basal lobe with 2 basally confluent and 1 separate spiniform teeth. Supracoxal seta $s c x$ widened at bases of pectinations, with $8(6-10)$ long or short pectinations, 35 (33-35) long. Ratios: $v i: v e=$ 1.6, $s c i: s c e=2.1(1.8-2.1), s c i-s c i: s c i-s c e=1.5(1.3-$ 1.5). Lengths of setae: vi 76 (73-76), ve 47 (45-47), sci 197 (155-197), sce 91 (85-91); distances: vi-vi 13 (1314), vi-ve 37 (28-37), sci-sci 37 (30-37), sci-sce 24 (2324). Hysterosomal setae d_{1} about $2.9(2.8-2.9) \times$ length of c_{1} and $3.1(2.4-3.1) \times$ length of $d_{2} ; d_{2}$ about $0.9(0.9-1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 38(30-38), c_{2} 142$ (142177), $c_{p} 160$ (123-160), $c_{3} 41$ (33-41), $d_{1} 110$ (85-110), $d_{2} 36(35-36), e_{1} 312(252-312), e_{2} 215(140-215), f_{2} 292$ (281-292), $h_{l} 356$ (285-356), $h_{2} 367$ (291-367), $h_{3} 252$ (229-252); distances: $c_{1}-c_{1} 101$ (85-101), $c_{1}-d_{1} 57$ (4757), $d_{1}-d_{1} 49$ (43-49), d_{2}-gla 56 (47-56), $d_{1}-e_{1} 67$ (6567), $e_{1}-e_{1} 101$ (87-101). Venter. Coxal plates I just reaching distal extremity of prosternal apodeme; coxal plates II broadly triangular, extending beyond apex of apodeme II, its posterior margin virtually straight. Setae la 1.2 (1.2$1.3) \times$ length of coxal plate II, 53 (46-53), 3a 31 (25-31); $3 b 2.4(2.3-2.4) \times$ length of $3 a, 73$ (58-73); g 25 (20-25), $4 a 74$ (64-74). Pseudanal setae $p s_{1} 1.6(1.4-1.8) \times$ as long as $p s_{2}, 195$ (172-195) long, $p s_{2} 3.8(3.8-5.2) \times$ length of $p s_{3}, 124$ (98-124) long, $p s_{3} 33$ (19-33). Adanal setae $a d_{t}$ 26 (24-26), ${a d_{2}}_{2} 18$ (12-18), $a_{3}(12-16)$. Copulatory opening 5 in diameter, spermathecal duct narrowing rapidly from copulatory opening for a distance about 2.9 (2.7-2.9) \times distance between sclerites of oviducts and then extending to base of spermathecal sac over a distance about $3.4(2.7-3.4) \times$ distance between sclerites of oviducts, base of spermathecal sac flat, distance between sclerites of oviducts 9 (9-14).
Legs. Leg I. 205 (202-205) long; femur I 51 (50-51), $v F$ simple, 47 (47-54) long; genu I 36 (32-36), $\sigma^{\prime} 41$ (38-41), $\sigma " 18$ (18-20), I $\sigma^{\prime}: \sigma^{\prime \prime}=2.3(1.9-2.3), c G 36(35-36), m G$ 41 (38-41); tibia I 30 (29-30), 甲 106 (84-106), gT 38 (37-38), hT 33 (32-33); tarsus I 82 (82-84) long, 20 (1920) wide, ω_{1} obviously widened at apex, 16 (16-17) long, $\varepsilon 4(4-5), \omega_{2} 4(4-5), \omega_{3} 20(20-21)$, distance between $a a$
and ω_{1} about 15 (13-15), aa 17 (15-17) long, ba 29 (2629), wa 42 (42-44), ra 28 (25-28), la 18 (18-22), d 27 (27-32), $e 5(5-6), f 10(10-13), s 6$ (5-6), u and $v 4$ (4-5), p and $q 6$ (6-7), empodium 13 (12-13), claw 12 (12-14). Leg II. 191 (191-198) long; femur II 49 (44-49), vF 58 (58-62); genu II 35 (35-37), $\sigma 18$ (18-19), cG 35 (3435), $m G 40$ (40-43); tibia II 29 (29-30), $\varphi 107$ (107-109), gT 34 (34-37), hT 36 (36-38); tarsus II 81 (79-81) long, 18 (18-19) wide, ω slightly widened at apex, 23 (22-23) long, ba 19 (19-21), wa 42 (32-42), ra 35 (25-35), la 17 (17-19), $d 22$ (22-24), e 5 (5-6), f9 (9-12), $s 6$ (5-6), u and $v 4$ (4-5), p and $q 6$ (6-7), empodium 13 (12-13), claw 11 (11-13). Leg III. 212 (212-220) long; femur III 40 (40-42); genu III 34 (34-36), б 17 (16-17), nG 51 (51-53); tibia III 28 (26-28), , 122 (122-126), kT 51 (51-53); tarsus III 88 (88-90) long, 13 (13-14) wide, w 32 (32-34), $r 26$ (26-27), $d 26$ (26-29), e 4 (4-5), $f 19$ (16-19), $s 5$ (5-6), $u 4, v 6$ (6-6.5), p and $q 3$ (3-3.5), empodium 12 (12-13), claw 11 (11-13). Leg IV. 234 (232-234) long; femur IV 47 (47-49), wF 47 (47-49); genu IV 44 (38-44); tibia IV 35 (34-35), $\varphi 101$ (101105), kT 40 (37-40); tarsus IV 96 (96-101) long, 15 (1415) wide, w setiform, 34 (32-34) long, r setiform, 22 (1822) long, $d 26$ (19-26), $e 4$ (4-5), f 19 (16-19), $s 5$ (5-6), $u 4, v 6$ (6-7), p and $q 3$ (3-3.5), empodium 13 (12-13), claw 11 (11-13).
Male (Fig. 134-138, Plates 18D, 20L, 23D, 28C, D, 30L, 31L, 34D)
Idiosoma. 325 (325-330) long, 190 (182-190) wide. Chelicera 70 (70-75) long, cheliceral seta cha conical, 4 (44.5) long, subcapitular setae $m 26$ (24-26), palpal supracoxal seta elcp $9(9-10)$ long, dorsal palptibial seta 18 (18-22), lateral palptibial seta 13 (13-16), dorsal palptarsal seta 7 (7-9), palptarsal solenidion 3 (3-3.5). Dorsum. Prodorsal shield as in female, 63 (61-63) long, 72 (67-72) wide between ve-ve. Eyespots present but not prominent. Grandjean's organ as in female, 12 (1012) long, supracoxal seta scx 25 (25-27) long. Ratios: vi: $v e=1.6$ sci: $s c e=2.1(2.1-2.2)$, sci-sci: $s c i-s c e=1.5$ (1.3-1.5). Lengths of setae: vi 57, ve 38 (38-45), sci 163 (160-163), sce 78 (74-78); distances: vi-vi 11 (11-12), vi-ve 28 (28-30), sci-sci 32 (30-32), sci-sce 22 (22-23). Hysterosomal setae d_{1} about $3.0(2.5-3.0) \times$ length of c_{1} and $2.8(2.8-3.1) \times$ length of $d_{2} ; d_{1}$ about $1.1(0.9-1.1) \times$ length of c_{1}; lengths of setae: $c_{1} 28$ (28-30), $c_{2} 164$ (160164), $c_{p} 119$ (110-119), $c_{3} 33$ (33-34), $d_{1} 83$ (75-83), d_{2} 30 (27-30), $e_{1} 268$ (268-308), $e_{2} 176$ (163-176), $f_{2} 238$ (238-246), $h_{l} 258$ (258-264), $h_{2} 265$ (265-274), $h_{3} 208$ (208-222); distances: $c_{l}-c_{l} 67$ (67-68), $c_{l}-d_{l} 50$ (47-50), $d_{1}-d_{1} 41$ (41-43), d_{2}-gla 32 (32-34), $d_{1}-e_{1} 57$ (57-60), $e_{1}-e_{1} 72$ (70-72). Venter. Shape of coxal plates I and II as in female. Setae la $1.0(1.0-1.1) \times$ length of coxal plate II,

37 (37-39); $3 a 22$ (20-22); 3b 2.6 (2.6-3.2)× length of $3 a$, 57 (57-63); g 22 (20-22), $4 a 61$ (57-60). Aedeagus with two obvious curves, S-shaped, distal half reversely curved, tapering from base to tip, 25 long, internal diameter linear, lateral arms supporting aedeagus turning outwards. Anal slit 53 (53-56) long, distance between anterior rim of anal slit and posterior margin of aedeagus 24 (18-24). Anal suckers about 17 (14-21) in diameter; anal discs 4 (3-4) in diameter, distances between right and left discs 31 (31-33). Pseudanal setae $p s_{1}$ about 1.8 (1.8$1.9) \times$ length of $p s_{2}, 136$ (127-136) long, $p s_{2} 5.4$ (5.3$5.4) \times$ length of $p s_{3}, 75(69-75)$ long, $p s_{3} 14$ (13-14); $p s_{2}-$ $p s_{2} 2.5(2.3-2.5) \times$ distance $p s_{1}-p s_{l}, p s_{1}-p s_{l} 17$ (17-19), $p s_{2}-p s_{2} 42$ (42-44).
Legs. Leg I. 166 (160-166) long; femur I 41 (41-42), $v F$ simple, 45 (41-45) long; genu I 30 (28-30), σ ' 34 (34-35), $\sigma " 18$ (18-19), I $\sigma^{\prime}: \sigma^{\prime \prime}=1.9(1.8-1.9), c G 28(26-28), m G$ 35 (33-35); tibia I 25 (24-25), $\varphi 92$ (81-92), gT 29 (2829), $h T 29$ (27-29); tarsus I 65 (63-65) long, 17 (16-17) wide, shape of ω_{1} as in female, 14 (14-15) long, $\varepsilon 4$ (3.54), $\omega_{2} 5(4-5), \omega_{3} 15$ (15-16), distance between $a a$ and ω_{1} about 12 (11-12), aa 15 (15-17) long, ba 18 (16-18), wa 34 (32-34), ra 24 (21-24), la 17 (16-17), d 28 (25-28), e $6(4-6), f 12(12-13), s 5(5-6), u$ and $v 4(4-5), p$ and $q 6$ (6-7), empodium 12 (12-14), claw 13 (11-13). Leg II. 160 (157-160) long; femur II 42 (40-42), $v F 45$ (45-47); genu II 30 (29-30), $\sigma 13$ (13-15), $c G 24$ (24-28), $m G 28$ (28-31); tibia II 23 (22-23), $\varphi 103$ (99-103), gT 22 (2223), $h T 26$ (24-26); tarsus II 65 (64-65) long, 14 (14-16) wide, ω as in female, 16 (16-17) long, ba 17 (15-17), wa 37 (35-37), ra 15 (15-23), la 24 (15-24), d 23 (23-24), e 5 (5-6), $f 11$ (11-12), $s 5$ (5-6), u and $v 4(4-5), p$ and $q 5$ (5-6), empodium 11 (11-13), claw 11 (10-12). Leg III. 151 (151-157) long; femur III 35 (34-35); genu III 28 (26-28), б 13 (12-13), nG 29 (29-40); tibia III 24 (2224), $\varphi 113$ (108-113), kT 27 (27-39); tarsus III 68 (6870) long, 14 (13-14) wide, w setiform, 28 (26-28) long, r setiform, 15 (15-20) long, $d 23$ (20-23), e 5 (5-6), $f 14$ (14-20), $s 5$ (4.5-5), u 3.5 (3.5-4), v5 (5-6), p and $q 3$ (33.5), empodium 12 (10-12), claw 11 (10-12). Leg IV. 182 (178-182) long; femur IV 39 (37-39), wF 37 (35-37); genu IV 33 (33-34); tibia IV 29 (27-29), $\varphi 92$ (92-96), $k T$ 26 (24-26); tarsus IV 76 (73-76) long, 13 (12-13) wide, w and r situated at level between suckers, w setiform, 26 (25-26) long, r setiform, 14 (14-15) long, distances between basal rim of tarsus IV and proximal sucker $d 30$ (29-30), between d and $e 18$ (17-18), between e and $f 14$ (13-14), ratio (a+b): $\mathrm{c}=3.4$ (3.4-3.5), $f 14(14-15)$ long, $s 5$ (5-5.5), $u 4, v 6$ (6-6.5), p and $q 3$ (3-3.5), empodium 13 (12-13), claw 11 (11-12).
Distribution. BASED ON MATERIAL EXAMINED: Cook Is, Fiji, Niue, Samoa, Tonga.

Material examined. Holotype, 66 paratypes and 5 nontype specimen - see Appendix 1 for details of specimens examined.

Habitat and host. PLANT OR PLANT PRODUCTS: banana, Cerbera mallam seeds, coconut, guava.
Etymology. The species name pacificus refers to the distribution of this species in the South Pacific region.
Remarks. This new species, T. pacificus, is similar to T. curvipenis Fain \& Fauvel in having a pair of eyespots on prodorsal shield, coxal plate II being broadly triangular and male having a S-shaped aedeagus, but differs from the latter in supracoxal seta scx being widened at bases of pectinations (Fig. 131) rather than slender and tapering from bases to tips (Fig. 25); ω_{1} on tarsus I being stout (Fig. 132) rather than slender (Fig. 26); aedeagus in male being longer (Fig. 136) than that of T. curvipenis (Fig. 30).

Tyrophagus perniciosusZakhvatkin

Fig. 139-148, Plates 4A, 5M, 9A, 13A, 14M, 15M, 19A, 20M, 24A, 28E, F, 30M, 31M, 35A
Tyrophagus perniciosus Zakhvatkin, 1941: 104; Hughes, 1976: 62; Nakao \& Kurosa, 1988: 138.
Diagnosis. Female. Eyespots absent; scx strong tapering from base to tip or slightly widened in basal $2 / 3$, with 16-22 moderate or short pectinations; d_{1} about 2.9 (2.4$3.2) \times$ length of c_{1} and $2.7(2.7-3.8) \times$ length of $d_{2} ; d_{2}$ about $0.9 \times$ length of c_{p}; coxal plates I not reaching apex of prosternal apodeme; coxal plates II triangular, not extending posteriorly beyond apex of apodeme II, with $2 / 3$ of posterior margin slightly concave. Spermathecal duct broad, widening gradually from midway to base of spermathecal sac, base of spermathecal sac broadly round, bending backwards. Tarsus I ω_{1} stout, obviously clavate, tarsus II ω stout, slightly clavate; setae w and r of tarsus IV spiniform.
Male. Eyespots, coxal plates, solenidia I ω_{1} and II ω as in female; d_{1} about 4.0 (3.2-4.0) \times length of c_{l} and 3.4 (2.9$3.4) \times$ length of $d_{2} ; d_{2}$ about 1.2 (1.1-1.2) \times length of c_{1}; aedeagus with one major curve, narrowing gradually in basal $1 / 4$ and almost straight in distal $3 / 4$, distal end nearly truncated, internal diameter of distal $3 / 4$ broad, lateral arms supporting aedeagus turning inwards; setae w and r of tarsus IV spiniform; ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=1.9$ (1.4-1.9).
Description. Female (Fig. 139-143, Plates 4A, 5M, 9A, 13A, 14M, 15M)
Idiosoma. 572 (438-574) long, 387 (239-387) wide. Chelicera 106 (87-106) long, cheliceral seta cha conical and apcally truncated, 7 (7-10) long; subcapitular setae $m 41$ (41-43); palpal supracoxal seta elcp 16 (16-17) long, dorsal palptibial seta 27 (25-27), lateral palptibial seta 19
(19-21), dorsal palptarsal seta 19 (17-19), palptarsal solenidion 4 (4-4.5). Dorsum. Prodorsal shield nearly rectangular, its lateral margins slightly concave and posterior margins broadly round; 91 (87-91) long, 116 (109120) wide between ve-ve. Eyespots absent. Grandjean's organ finger-like (16-21 long), its basal lobe with 3-5 spiniform teeth. Supracoxal seta $s c x$ tapering from base to tip or slightly widened in basal $2 / 3$, with 16-22 moderate or short pectinations, $42(38-42)$ long. Ratios: $v i$: $v e=1.9$ (1.7-2.0), sci: $s c e=1.6(1.5-1.6), s c i-s c i: s c i-s c e=1.8$ (1.3-1.8). Lengths of setae: vi 98 (97-98), ve 62 (51-62), sci 185 (185-205), sce 116 (116-135); distances: vi-vi 16 (15-16), vi-ve 51 (49-51), sci-sci 51 (40-51), sci-sce 29 (29-31). Hysterosomal setae d_{1} about 2.9 (2.4-3.2)× length of c_{1} and $2.7(2.7-3.8) \times$ length of $d_{2} ; d_{2}$ about $0.9 \times$ length of c_{1}; lengths of setae: $c_{1} 47(41-51), c_{2} 206$ (202208), $c_{p} 141(131-145), c_{3} 43(31-44), d_{l} 138(124-138)$, $d_{2} 51(35-51), e_{1} 261(257-299), e_{2} 224$ (204-227), $f_{2} 278$ (278-331), $h_{1} 311$ (311-352), h 333 (311-354), $h_{3} 253$ (238-331); distances: $c_{1}-c_{1} 152(129-153), c_{1}-d_{1} 62$ (43$62), d_{1}-d_{1} 91$ (65-92), $d_{2}-$ gla 69 (50-69), $d_{1}-e_{1} 119$ (86119), $e_{1}-e_{1} 167$ (167-169). Venter. Coxal plates I terminating well before apex of prosternal apodeme; coxal plates II triangular, not reaching apex of its apodeme, with an almost straight posterior margin. Setae la 0.7 (0.7-0.8) \times length of coxal plate II, 40 (40-43) long, $3 a 27$ (23-34); $3 b 1.7$ (1.3-1.8) \times length of $3 a, 47$ (42-47); g 22 (22-24), $4 a 43$ (43-47). Pseudanal setae $p s_{1} 1.5$ (1.4$1.9) \times$ as long as $p s_{2}, 224$ (216-224) long, $p s_{2} 4.6$ (4.6$5.8) \times$ length of $p s_{3}, 152(114-162)$ long, $p s_{3} 33$ (25-33). Adanal setae $a d_{1} 36$ (31-36), ad 29 (24-30), ad 26 (1626). Copulatory opening $16(16-18)$ in diameter, spermathecal duct broad, widening gradually from midway to base of spermathecal sac, base of spermathecal sac broadly round, bending backwards, distance between sclerites of oviducts 45 (41-49).
Legs. Leg I. 247 (213-247) long; femur I 63 (62-65), $v F$ simple, 51 (51-52) long; genu I 43 (43-46), σ ' 60 (55-60), $\sigma " 31$ (27-31), I σ ': $\sigma "=2.0, c G 49$ (44-49), $m G 53$ (4753); tibia I 32 (32-34), $\varphi 121$ (121-143), gT 24 (24-27), $h T 38$ (33-38); tarsus I 88 (83-90) long, 28 (23-29) wide, ω_{1} stout, obviously clavate, 19 (17-19) long, $\varepsilon 5$ (3-5), ω_{2} $8(8-9), \omega_{3} 34(33-38)$, distance between $a a$ and ω_{1} about 12 (8-12), aa 27 (27-28) long, ba 28 (27-31), wa 43 (4355), ra 28 (28-35), la 24 (23-27), d 41 (38-41), e 10 (1013), $f 19$ (19-21), s 9 (8-9), u and $v 7$ (7-8), p and $q 9$ (910), empodium 24 (23-24), claw 21 (21-24). Leg II. 216 (214-220) long; femur II 61 (57-62), $v F 70$ (62-70); genu II 38 (38-43), $\sigma 25$ (22-25), cG 40 (40-41), $m G 54$ (4754); tibia II 31 (30-31), 甲 131 (107-145), gT 26 (25-30), $h T 41$ (38-39); tarsus II 88 (77-87) long, 24 (21-24) wide, ω stout, slightly clavate, 20 (20-21) long, ba 29
(28-33), wa 47 (47-49), ra 44 (42-44), la 24 (19-24), d $28(28-30)$, e $11(11-12), f 18(20-22), s 8(8-9), u$ and v $8(7-8), p$ and $q 9(9-10)$, empodium 22 (17-22), claw 24 (23-25). Leg III. 242 (207-242) long; femur III 47 (4350); genu III 37 (33-39), б 22 (22-23), nG 63 (50-63); tibia III 34 (30-34), $\varphi 134$ (129-146), kT 49 (40-52); tarsus III 97 (93-97) long, 19 (16-19) wide, w setiform, 37 (37-43) long, r setiform, 35 (35-37) long, $d 29$ (2635), e 10 (10-11), f 21 (21-27), $s 8$ (7-8), u 7 (6-7), $v 8$ (7-8), p and $q 4$ (4-4.5), empodium 19 (15-21), claw 19 (17-22). Leg IV. 277 (242-277) long; femur IV 59 (5159), wF 41 (35-41); genu IV 46 (45-46); tibia IV 37 (3638), $\varphi 118$ (118-128), $k T 37$ (23-37); tarsus IV 112 (108112) long, 19 (17-20) wide, w spiniform, 37 (37-44) long, r spiniform, 24 (22-24) long, $d 31$ (27-34), e 8 (811), $f 25(23-26), s 7(7-8), u 7(6-7), v 8(7-8), p$ and q 4 (4-4.5), empodium 22 (15-23), claw 17 (17-19).
Male (Fig. 144-148, Plates 19A, 20M, 24A, 28E, F, 30M, $31 \mathrm{M}, 35 \mathrm{~A}$)
Idiosoma. 419 (362-419) long, 296 (236-296) wide. Chelicera 92 (74-92) long, cheliceral seta cha conical and distally truncated, 7 (5-7) long, subcapitular setae $m 36$ (29-36); palpal supracoxal seta elcp 13 (10-13) long, dorsal palptibial seta 22 (19-22), lateral palptibial seta 16 (13-16), dorsal palptarsal seta 13 (11-13), palptarsal solenidion 3 (3-4). Dorsum. Prodorsal shield as in female, 74 (61-74) long, 95 (73-95) wide between ve-ve. Eyespots absent. Grandjean's organ as in female, 17 (1417) long; supracoxal seta $s c x$ slightly widened in basal $2 / 3$, with 10-18 moderate or short pectinations, 33 (29-33) long. Ratios: $v i: v e=2.0$ (1.8-2.0), sci: sce $=1.8$ (1.81.9), $s c i-s c i$: $s c i-s c e=1.5$. Lengths of setae: vi 85 (6585), ve 42 (36-42), sci 169 (131-169), sce 94 (70-94); distances: vi-vi 15 (11-15), vi-ve 41 (31-41), sci-sci 37 (30-37), sci-sce 24 (20-24). Hysterosomal setae d_{1} about $4.0(3.2-4.0) \times$ length of c_{1} and $3.4(2.9-3.4) \times$ length of d_{2}; d_{2} about $1.2(1.1-1.2) \times$ length of c_{1}; lengths of setae: $c_{1} 26$ (21-26), $c_{2} 183$ (142-183), $c_{p} 116$ (83-116), $c_{3} 32$ (2132), $d_{1} 104$ (67-104), $d_{2} 31(23-31), e_{1} 253(218-253), e_{2}$ 201 (147-201), $f_{2} 286$ (278-286), $h_{1} 321$ (295-321), h_{2} 314 (299-314), $h_{3} 258$ (208-258); distances: $c_{1}-c_{1} 127$ (113-127), $c_{1}-d_{1} 52(44-52), d_{1}-d_{1} 62(58-62), d_{2}-$ gla 36 (36-42), $d_{1}-e_{1} 79$ (71-79), $e_{1}-e_{1} 124$ (110-124). Venter. Shape of coxal plates I and II as in female. Setae la 0.7 (0.5-0.7) \times length of coxal plate II, 33 (22-33); 3a 22 (1322); $3 b 1.8$ (1.8-2.1)× length of $3 a, 39$ (27-39); g 20 (1220), $4 a 41$ (29-41). Aedeagus with one major curve, narrowing gradually in basal $1 / 4$ and almost straight in distal 3/4, distal end nearly truncated, 26 (24-26) long, internal diameter of distal $3 / 4$ broad; lateral arms supporting aedeagus turning inwards. Anal slit 74 (59-74) long, distance between anterior rim of anal slit and posterior mar-
gin of aedeagus 11 （5－11）．Anal suckers about 27 （23－27） in diameter；anal discs 4 in diameter，distance between right and left discs $40(27-40)$ ．Pseudanal setae $p s_{1}$ about 4.7 （4．7－5．0）\times length of $p s_{2}, 191$（145－191）long，$p s_{2} 3.4$ $(2.4-3.4) \times$ length of $p s_{3}, 41$（29－41）long，$p s_{3} 12$（12－13）； $p s_{2}-p s_{2} 1.3(1.3-1.4) \times$ distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 40(28-$ 40），$p s_{2}-p s_{2} 51$（40－51）．
Legs．Leg I． 201 （167－201）long；femur I 56 （45－56），$v F$ simple， 46 （37－46）long；genu I 40 （31－40），$\sigma^{\prime} 51$（43－51）， $\sigma " 26$（22－26），I $\sigma^{\prime}: \sigma^{\prime \prime}=2.0, c G 31$（25－31），$m G 39$（31－ 39）；tibia I 30 （26－30），甲 106 （99－106），gT 21 （16－21）， $h T 25$（22－25）；tarsus I 80 （65－80）long， 23 （18－23）wide， ω_{1} stout and clavate， 14 （10－14）long，$\varepsilon 4$（3－4），$\omega_{2} 7$（5－ 7），$\omega_{3} 31$（25－31），distance between $a a$ and ω_{1} about 8 （8－ 9），aa 23 （12－23）long，ba 24 （21－24），wa 41 （34－41），ra 27 （26－27），la 18 （16－18），d 31 （21－31），e 8 （6－8），f 14 ， （13－14）， 7 （6－7），u and $v 7$（6－7），p and $q 8$（8－9）， empodium 19 （15－19），claw 15 （13－15）．Leg II． 189 （153－ 189）long；femur II 53 （41－53），$v F 44$（37－44）；genu II 40 （30－40），$\sigma 23$（14－23），cG 33 （22－33），$m G 35$（25－35）； tibia II 30 （27－30），甲 118 （99－118），gT 16 （13－16），hT 24 （18－24）；tarsus II 75 （60－75）long， 20 （15－20）wide，ω stout，slightly clavate， 17 （13－17）long，ba 22 （16－22）， wa 43 （34－43），ra 34 （24－34），la 23 （15－23），d 29 （21－ 29），$e 7$（6－7），$f 18$（13－18）， 7 （6－7），u and $v 7$（6－7），p and $q 8(8-9)$ ，empodium $15(15-16)$ ，claw $15(14-15)$ ． Leg III． 204 （163－204）long；femur III 43 （35－43）；genu III 35 （27－35），o 21 （21－22），nG 47 （29－47）；tibia III 27 （21－27），$\varphi 124$（103－124），kT 23 （21－23）；tarsus III 80 （67－80）long， 15 （12－15）wide，w setiform， 31 （21－31），r setiform， 29 （20－29），d 28 （20－28），e 6 （6－7），f 23 （19－ 23），$s 7$（6－7），u 6 （5－6），v 7 （6－7），p and $q 3$（3－4）， empodium 14，claw 15 （13－15）．Leg IV． 222 （184－222） long；femur IV 59 （39－59），wF 30 （26－30）；genu IV 40 （33－40）；tibia IV 33 （27－33），甲 106 （106－110），kT 23 （19－23）；tarsus IV 88 （74－88）long， 16 （11－16）wide，w and r situated at level between suckers，w spiniform， 28 （20－28）long，r spiniform， 13 （10－13）long，distances be－ tween basal rim of tarsus IV and proximal sucker $d 23$ （16－23），between d and $e 22(17-22)$ ，between e and $f 24$ （23－24），ratio $(\mathrm{a}+\mathrm{b}): \mathrm{c}=1.9(1.4-1.9), f 23(17-23)$ long， $s 7$（6－7），$u 6$（5－6），$v 7$（6－7），p and $q 4$ ，empodium 15， claw 14 （12－14）．

Distribution．BASED ON MATERIAL EXAMINED：

 Australia．BASED ON LITERATURE：Australia（Hughes 1976）， Bulgaria（Hughes 1976），U．K．（Hughes 1976），Germany （Kazhdaya 1996），Japan（Nakao \＆Kurosa 1988）， Kazakhstan（Sadieva 1984），Netherlands（Jonge 1988）， Russia（Zahkvatkin 1941），Turkey（Cobanoglu \＆Bayram 1998），U．S．A．（USDA 1981）．

Material examined． 24 non－type specimens－see Ap－ pendix 1 for details of specimens examined．

Habitat and host．PLANT OR PLANT PRODUCTS： cauliflower seedlings，melon，mushrooms（Morchella conica and M ．esculenta），oil－producing seed and probably many other plants stored in granaries and warehouses， pumpkin，soil and dead plant residues，spinach，tomato （seed \＆newly germinating plants），various grain products （cereals，etc．）．

Feeding on the mycelium of Sporidesmium тисоsum var．pluriseptatum on cucumber．

ANIMAL OR ANIMAL PRODUCTS：bird cage， budgerigar cage，human（causing acariasis），nests of house－ martins（Delichon urbica）and starlings（Sturnus vulgaris）．

Remarks．This species can be distinguished from other species in the genus by its robust nature：the female repro－ ductive tract being composed of a broad spermatheca with the sclerite supporting the spermathecal sac being of a very wide diameter so that sclerites of oviducts are broadly spaced；the aedeagus in male being stout with distal $3 / 4$ of its internal diameter broad and terminating in a distinct truncated tip，and ω_{1} a stout club．

The specimens associated with the Polynesian rat on the Tokelau Islands（Ramsay 1977）are not T．perniciosus but likely to be T．vanheurani Oudemans．The mite species associated with soft wax scale and Chinese wax scale（Lo 1995）were also misidentified as T．perniciosus．

Tyrophagus tropicus Robertson

Fig．149－158，Plates 4B，5N，9B，13B，14N，15N，19B， $20 \mathrm{~N}, 24 \mathrm{~B}, 29 \mathrm{~A}, \mathrm{~B}, 30 \mathrm{~N}, 31 \mathrm{~N}, 35 \mathrm{~B}$
Tyrophagus tropicus Robertson，1959：173；Wildies，2000， 149.

Diagnosis．Female．Eyespots absent but marginal area of shield faintly punctate；scx broadly widened at bases of pectinations，with $16-22$ moderate or short pectinations；setae d_{1} about $2.2(1.2-2.7) \times$ length of c_{1} and $1.2(0.7-1.5) \times$ length of $d_{2} ; d_{2}$ about $1.9(1.2-1.9) \times$ length of c_{1} ；coxal plates I and II obscure．Adanal setae $a d_{1}$ very long， $4.8(2.7-4.8) \times$ length of $a d_{3}$ and $p s_{3} ; \mathrm{ad}_{2}$ may also extended．Spermathecal duct narrowing gradually from copulatory opening for a distance nearly $1.3 \times$ distance between sclerites of oviducts and then forming a thin tube leading to base of spermathecal sac over a distance about $2.0 \times$ distance between sclerites of oviducts，base of spermathecal sac large and flat．Tarsus I ω_{1} stout，slightly clavate，tarsus II ω stout，obviously clavate；setae w and r of tarsus IV setiform．

Male．Eyespots，coxal plates，solenidia I ω_{1} and II ω as in female；d_{l} about $2.2(1.2-2.7) \times$ length of c_{l} and $1.2(0.7-$ $1.5) \times$ length of $d_{2} ; d_{2}$ about $1.9(1.2-1.9) \times$ length of c_{1} ；
aedeagus very short, with one major curve, its internal diameter of distal $1 / 3$ spindle-form and of basal $2 / 3$ linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=1.8(1.5-1.8)$.
Description. Female (Fig. 149-153, Plates 4B, 5N, 9B, $13 \mathrm{~B}, 14 \mathrm{~N}, 15 \mathrm{~N}$)
Idiosoma. 443 (373-773) long, 281 (227-281) wide. Chelicera 84 (52-84) long, cheliceral seta cha conical, 5 long, subcapitular setae $m 32$ (29-32), palpal supracoxal seta elcp slender, 18 (15-18) long, dorsal palptibial seta 20 (19-21), lateral palptibial seta 14 (11-14), dorsal palptarsal seta 12 (10-12), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral edeges almost straight and posteriolateral edeges nearly straight, 73 (57-73) long, 85 (73-85) wide between ve$v e$. Eyespots absent but marginal area of shield faintly punctate. Grandjean's organ finger-like (12 long), its basal lobe with 3 spiniform teeth. Supracoxal seta scx broadly widened at bases of pectinations, with 16-22 moderate or short pectinations, 34 (31-34) long. Ratios: $v i: v e=1.6(1.3-1.6)$, sci: $s c e=1.3(1.2-1.3)$, sci-sci: $s c i-$ $s c e=1.5(1.5-1.9)$. Lengths of setae: vi $85(60-85)$, ve 52 (42-58), sci 131 (74-131), sce 103 (57-103); distances: vi-vi 15 (9-15), vi-ve 40 (33-40), sci-sci 40 (37-47), sci-sce 27 (21-33). Hysterosomal setae d_{1} about 2.2 (1.2$2.7) \times$ length of c_{1} and $1.2(0.7-1.5) \times$ length of $d_{2} ; d_{2}$ about $1.9(1.2-1.9) \times$ length of c_{1}; lengths of setae: $c_{1} 43$ (3343), $c_{2} 168$ (55-138), $c_{p} 155(57-155), c_{3} 48$ (37-48), d_{l} 93 (41-93), $d_{2} 80(59-80), e_{1} 238$ (63-238), $e_{2} 206$ (112206), $f_{2} 348$ (303-348), $h_{1} 288$ (67-333), $h_{2} 345$ (304345), $h_{3} 275$ (205-275); distances: $c_{1}-c_{1} 107$ (89-107), $c_{1}-d_{1} 45(37-48), d_{1}-d_{1} 67(58-67), d_{2}-$ gla 67 (51-67), $d_{1}-e_{1} 97$ (84-97), $e_{1}-e_{l} 117(97-117)$. Venter. Coxal plates I and II obscure (not detectable). Setae $1 a 1.1(1.0-1.2) \times$ length of coxal plate II, 51 (40-51), $3 a 25(20-25) ; 3 b 2.0$ (2.0-2.1) \times length of $3 a$, 51 (42-51); g 19 (19-23), 4a 73 (69-78). Pseudanal setae, $p s_{1} 1.5(1.3-1.5) \times$ as long as $p s_{2}, 233$ (188-233) long, $p s_{2}$ very long, about 6.1 (5.3$6.1) \times$ length of $p s_{3}, 158$ (122-162) long, $p s_{3} 26$ (21-32). Adanal setae $a d_{1}$ very long, 105 (57-105), ad long, 61 (23-61), ad 22 (21-22). Copulatory opening with a circular shield supporting sclerotised pad, $11(10-11)$ in diameter, spermathecal duct narrowing gradually from copulatory opening for a distance nearly $1.3 \times$ distance between sclerites of oviducts and then forming a thin tube leading to base of spermathecal sac over a distance about $2.0 \times$ distance between sclerites of oviducts, base of spermathecal sac a large, flat circle, distance between sclerites of oviducts 12.5 .
Legs. Leg I. 183 (158-183) long; femur I 47 (42-47), $v F$ simple, 49 (44-50) long; genu I 35 (28-35), $\sigma^{\prime} 31$ (22-31), $\sigma " 21$ (16-26), I σ ': $\sigma "=1.5$ (1.3-1.7), $c G 23$ (23-30), $m G$

41 (32-41); tibia I 32 (24-32), 甲 88 (87-98), gT 24 (2024), $h T 23$ (20-23); tarsus I 75 (59-75) long, 17 (16-18) wide, ω_{1} stout, slightly clavate, 15 (13-19) long, $\varepsilon 4$ (35), $\omega_{2} 5(4-5), \omega_{3} 18(18-20)$, distance between $a a$ and ω_{1} about 10 (8-10), aa 13 (10-13) long, ba 18 (17-18), wa 29 (29-33), ra 27 (23-28), la 20 (15-20), d 29 (29-32), e 8 (7-8), $f 14(12-14), s 5, u$ and $v 5$ (4-5), p and $q 6(5-6)$, empodium 11 (8-11), claw 14 (12-14). Leg II. 171 (145171) long; femur II 47 (40-47), $v F 63$ (51-63); genu II 32 (28-32), $\sigma 16$ (11-16), cG 26 (23-26), $m G 31$ (29-33); tibia II 27 (22-27), 甲 102 (89-102), gT 20 (16-20), hT 18 (18-23); tarsus II 69 (57-69) long, 17 (14-17) wide, ω stout, obviously clavate, 18 (17-21) long, ba 21 (17-21), wa 36 (25-36), ra 21 (20-27), la 16 (14-16), d 29 (2029), e 7 (6-7), $f 17$ (12-17), $s 5, u$ and $v 4, p$ and $q 5$ (5-6), empodium 11 (8-11), claw 12 (10-12). Leg III. 187 (157187) long; femur III 40 (32-40); genu III 31 (26-31), $\sigma 10$ (7-10), nG 39 (32-39); tibia III 31 (23-31), $\varphi 89$ (72-89), $k T 40$ (24-40); tarsus III 82 (64-82) long, 15 (11-15) wide, w setiform, 29 (24-29) long, r setiform, 30 (21-30) long, $d 23$ (19-23), e 7 (6-7), f 23 (16-23), s 6 (5-6), u $4.5, v 4.5, p$ and $q 4$ (3-4), empodium 11 (8-11), claw 13 (9-13). Leg IV. 225 (193-225) long; femur IV 45 (4045), wF 55 (43-55); genu IV 37 (32-37); tibia IV 35 (2735), $\varphi 82$ (65-82), kT 31 (18-31); tarsus IV 90 (79-90) long, 14 (11-14) wide, w setiform, 33 (21-33) long, r setiform, 25 (24-26) long, $d 29$ (19-29), e 7 (6-7), f 25 (15-25), s 6, $u 5, v 5.5, p$ and $q 4$ (3-4), empodium 10 (710), claw 13 (9-13).

Male (Fig. 154-158, Plates 19B, 20N, 24B, 29A, B, 30N, $31 \mathrm{~N}, 35 \mathrm{~B}$)
Idiosoma. 367 (307-367) long, 243 (187-243) wide. Chelicera 67 (61-67) long, cheliceral seta cha conical, 4 (4-5) long, subcapitular setae $m 27$ (24-29), palpal supracoxal seta elcp slender, 13 (13-14) long, dorsal palptibial seta 18 (17-18), lateral palptibial seta 12 (10-12), dorsal palptarsal seta 11 (10-11), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield 55 (55-58) long, 67 (58-67) wide between $v e-v e$. Eyespots absent but marginal area of shield faintly punctate as in female; Grandjean's organ finger-like (8-13 long), its basal lobe with 3-4 spiniform teeth; $s c x$ as in female, 26 (24-27) long. Ratios: vi: ve $=$ 1.5 (1.3-1.5), sci: sce = 1.4 (1.4-1.5), sci-sci: $s c i-s c e=$ 1.5. Lengths of setae: vi 66 (55-66), ve 43 (37-43), sci 123 (91-125), sce 87 (65-87); distances: vi-vi 10 (9-10), vi-ve 33 (26-33), sci-sci 25 (32-36), sci-sce 26 (20-33). Hysterosomal setae d_{1} about 2.6 (1.8-2.6) \times length of c_{1} and $1.2(0.9-1.2) \times$ length of $d_{2} ; d_{2}$ about $2.2(1.9-2.4) \times$ length of c_{1}; lengths of setae: $c_{1} 27$ (22-33), $c_{2} 128$ (100143), $c_{p} 130(101-130), c_{3} 43(30-43), d_{1} 70(42-70), d_{2}$ 60 (43-67), $e_{1} 188$ (153-192), $e_{2} 151$ (111-155), $f_{2} 235$ (228-245), $h_{1} 196$ (185-232), $h_{2} 266$ (250-289), $h_{3} 151$
(135-187); distances: $c_{1}-c_{l} 90(72-90), c_{1}-d_{1} 44$ (32-44), $d_{1}-d_{1} 60$ (50-60), $d_{2}-$ gla 57 (42-57), $d_{1}-e_{1} 102$ (70-102), $e_{1}-e_{l} 100(82-100)$. Venter. Shape of coxal plates I and II obscure, not discernable. Setae la $1.0(0.8-1.0) \times$ length of coxal plate II, 35 (27-35); $3 a 17$ (14-19); $3 b 2.1$ (1.8$2.4) \times$ length of $3 a, 36$ (33-37) long; $g 21$ (12-21), $4 a 54$ (40-54). Aedeagus very short ($13-15$ long), with one major curve, nearly cylindrical in basal half and narrowing gradually in distal half, distal end slightly expanded and truncate, its internal diameter of distal $1 / 3$ spindle-form and of basal $2 / 3$ linear, lateral arms supporting aedeagus turning outwards. Anal slit $60(52-60)$ long, distance between anterior rim of anal slit and posterior margin of aedeagus 25 (17-25). Anal suckers about 23 (20-23) in diameter; anal discs 5 in diameter, distances between right and left discs 25 (25-27). Pseudanal setae $p s_{1}$ about 2.2 (1.5$2.3) \times$ length of $p s_{2}, 111$ (88-113) long, $p s_{2} 4.2$ (3.0-5.9)× length of $p s_{3}, 50$ (44-60) long, $p s_{3} 12$ (9-15); $p s_{2}-p s_{2} 1.8$ (1.7-1.9) \times distance $p s_{1}-p s_{1}, p s_{1}-p s_{1} 27$ (25-28), $p s_{2}-p s_{2}$ 48 (46-50).
Legs. Leg I. 140 (133-143) long; femur I 35 (35-37), $v F$ simple, 42 (35-42) long; genu I27 (25-27), $\sigma^{\prime} 26$ (21-26), $\sigma^{\prime \prime} 17(12-17), \mathrm{I} \sigma^{\prime}: \sigma^{\prime \prime}=1.5(1.5-2.3), c G 28$ (24-28), $m G$ 33 (27-33); tibia I 25 (20-25), ¢ 78 (67-78), gT 19 (1519), $h T 15$ (14-19); tarsus I 57 (53-57) long, 15 (14-15) wide, shape of ω_{1} stout, slightly tapering at apex, 14 (1314) long, $\varepsilon 3$ (3-3.5), $\omega_{2} 4$ (3.5-4.5), $\omega_{3} 17$ (16-17), distance between $a a$ and ω_{1} about 7 (6-7), aa 12 (11-12) long, ba 12 (11-14), wa 27 (27-35), ra 23 (19-25), la 12 (12-16), $d 18$ (17-19), e 7 (6-7), f11 (11-12), $s 5$ (5-5.5), u and $v 3$ (3-3.5), p and $q 4$ (4-5), empodium 8 (7-8), claw 12 (11-12). Leg II. 132 (132-141) long; femur II 35 (32-37), $v F 49$ (44-49); genu II 25 (24-25), $\sigma 13$ (9-13), $c G 22$ (15-22), $m G 24$ (16-24); tibia II 21 (19-21), $\varphi 91$ (77-91), gT 11 (11-13), hT 12 (12-16); tarsus II 51 (5056) long, 14 (14-15) wide, ω obviously clavate, 15 (1516) long, ba 17 (13-17), wa 29 (27-32), ra 27 (25-27), la 16 (13-16), $d 20$ (15-20), e 6,f13 (11-13), $s 5$ (5-5.5), u and $v 4(3-4), p$ and $q 4(4-5)$, empodium 8 (8-9), claw 11 (10-11). Leg III. 150 (137-152) long; femur III 30 (3031); genu III 25 (23-25), $\sigma 7$ (6-7), nG 34 (23-34); tibia III 22 (22-23), $\varphi 73$ (64-72), kT 26 (22-26); tarsus III 61 (58-65) long, 14 (11-14) wide, w setiform, 25 (23-27) long, r setiform, 20 (19-23) long, $d 20$ (19-20), e 6, $f 17$ (15-18), $s 5$ (5-6), $u 4, v 4$ (4-4.5), p and $q 4$ (3-4), empodium 8 (8-9), claw 11 (9-11). Leg IV. 165 (157170) long; femur IV 35 (35-37), wF 29 (27-29); genu IV 31 (27-31); tibia IV 29 (25-29), ¢ 71 (25-29), kT 21 (1722); tarsus IV 61 (57-64) long, 13 (11-13) wide, w and r situated at level between suckers, w setiform, 21 (18-23) long, r setiform, 14 (11-14) long, distances between basal rim of tarsus IV and proximal sucker $d 14$ (11-14), be-
tween d and $e 17$ (14-19), between e and $f 17$ (16-20), ratio (a+b): $\mathrm{c}=1.8(1.5-1.8), f 19(17-19)$ long, $s 6(5-6)$, $u 4$ (4-4.5), $v 5$ (4-5), p and $q 3$ (3-4), empodium 8 (8-9), claw 11 (10-11).
Distribution. BASED ON MATERIAL EXAMINED: Africa, China (Hong Kong), Malaysia, Nigeria, Samoa, West Africa.
BASED ON LITERATURE: China (east) (Wang 1985), Germany (Wildies 2000), India (Putatunda \& Abrol 2003), Nigeria (Robertson 1959).
Material examined. Holotype, 3 paratypes, and 16 nontype specimen - see Appendix 1 for details of specimens examined.

Habitat and host. PLANT OR PLANT PRODUCTS: bananas, cocoa (Theobroma cacao) beans, dried fruit, dried lychee, palm kernel dust.

Remarks. This species is readily recognized amongst species of the genus with its idiosomal setae d_{2} being about twice length of c_{r}. Females of the species are distinctive with the adanal setae $a d_{\text {, }}$ being very long, about twice length of $a d_{2}$. Aedeagus of male is similar to that of T. vanheurni Oudemans in having one major curve and being short, but can be differentiated from the latter by lateral arms supporting aedeagus turning outwards (Fig. 156) rather than inwards (Fig. 106).

Dorsal idiosomal setae vi , sci, sce, $c_{2}, c_{p}, e_{p}, e_{2}$ and h_{l} of some specimens from Hong Kong and Malaysia are stout and reduced in length.

Tyrophagus womersleyisp. n.

Fig. 159-163, Plates 4C, 5O, 9C, 13C, 14O, 150
Diagnosis. Female. Eyespots present; scx slightly to moderately widened at bases of pectinations, with 8-9 moderate or short pectinations; $d_{l} 3.9 \times$ length of c_{l} and $3.0 \times$ length of $d_{2} ; d_{2} 1.3 \times$ length of $c_{1} ;$ coxal plates I and II large, both extending just beyond posterior apex of their respective apodemes; coxal plates II with posterior margin convex. Spermathecal duct narrowing rapidly from copulatory opening for a distance nearly $1.5 \times$ distance between sclerites of oviducts and then forming a thin tube leading to base of spermathecal sac over a distance about $3.2 \times$ distance between sclerites of oviducts, base of spermathecal sac large and flat. Tarsus I ω_{1} obviously widened at apex, and tarsus II ω stout, almost cylindrical; setae r of tarsus IV spiniform.
Description. Female (Fig. 159-163, Plates 4C, 5O, 9C, 13C, 14O, 150)
Idiosoma. 348 long, 208 wide. Chelicera 73 long, cheliceral seta cha conical with bifurcated tip, 4.5 long, subcapitular setae m 24, palpal supracoxal seta elcp smooth and slen-
der, 10 long, dorsal palptibial seta 27, lateral palptibial seta 13, dorsal palptarsal seta 14, palptarsal solenidion 3. Dorsum. Prodorsal shield nearly pentagonal, its lateral margins strongly concave and posterolateral margins slightly concave; 66 long, 69 wide between ve-ve. Eyespots present, faint. Grandjean's organ finger-like (12), its basal lobe with 2 basally spiniform teeth. Supracoxal seta scx slightly or moderately widened in basal half, with 8-9 moderate or short pectinations, 33 long. Ratios: vi: ve $=1.5$, sci-sci: $s c i-s c e=1.5$. Lengths of setae: $v i 68$, ve 44, sci 152 , sce 73 ; distances: vi-vi 10 , vi-ve 30 , sci-sci 30 , sci-sce 20 . Hysterosomal setae d_{1} about $3.9 \times$ length of c_{1} and $3.0 \times$ length of $d_{2} ; d_{2} 1.3 \times$ length of $c_{1} ;$ lengths of setae: $c_{1} 24, c_{2} 177, c_{p} 163, c_{3} 28, d_{1} 93, d_{2} 31, e_{1} 303, e_{2}$ 231, $f_{2} 318, h_{1} 310, h_{2} 338, h_{3} 309$; distances: $c_{1}-c_{1} 76, c_{1}-$ $d_{1} 54, d_{1}-d_{1} 26, d_{2}-$ gla 34, $d_{1}-e_{1} 59, e_{1}-e_{1} 80$. Venter. Coxal plates I and II well developed extending just beyond apex of their respective apodemes; coxal plates II with posterior margin convex. Setae $1 a 0.7 \times$ length of coxal plate II, $30,3 a 17 ; 3 b 2.8 \times$ length of $3 a, 35 ; g 13,4 a$ 59. Pseudanal setae $p s_{1} 2.7 \times$ as long as $p s_{2}, 205$ long, $p s_{2}$ $5.5 \times$ length of $p s_{3}, 77$ long, $p s_{3} 14$. Adanal setae $\operatorname{ad}_{1} 12$, $a d_{2} 10, a d_{3} 11$. Copulatory opening 8.5 in diameter, Spermathecal duct narrowing rapidly from copulatory opening for a distance nearly $1.5 \times$ distance between sclerites of oviducts and then forming a thin tube leading to base of spermathecal sac over a distance about $3.2 \times$ distance between sclerites of oviducts, base of spermathecal sac large and flat, distance between sclerites of oviducts 9.5.
Legs. Leg I. 167 long; femur I 43, $v F$ simple, 37 long; genu I 33, $\sigma^{\prime} 36, \sigma^{\prime \prime} 18$, I $\sigma^{\prime}: \sigma^{\prime \prime}=2.0, c G 30, m G 42$; tibia I 27, φ 101, $g T 26, h T 27$; tarsus I 66 long, 18 wide, ω_{1} stout, obviously widened at apex, 14 long, $\varepsilon 4, \omega_{2} 7, \omega_{3} 23$, distance between $a a$ and ω_{1} about 11, aa 18 long, ba 20, wa 26, ra 23, la 21, $d 26, e 6, f 18, s 5, u$ and $v 4, p$ and $q 5.5$, empodium 14, claw 20. Leg II. 165 long; femur II 45, $v F$ 45; genu II 31, $\sigma 17, c G 27, m G 39$; tibia II $24, \varphi 103, g T$ $23, h T 24$; tarsus II 64 long, 17 wide, ω stout, almost cylindrical, 16 long, ba 20, wa 31, ra 25 , la 18, d28, e 6,f $13, s 5, u$ and $v 4, p$ and q 5.5, empodium 14, claw 19. Leg III. 162 long; femur III 35 ; genu III 30 , $\sigma 18$ (abnormlly 30), $k T 41$; tibia III 24, $\varphi 122, k T 40$; tarsus III 67 long, 13 wide, w setiform, 23, r setiform, $24, d 22, e 6, f 20, s 5.5$, $u 4.5, v 5.5, p$ and $q 2.5$, empodium 13, claw 19. Leg IV. 200 long; femur IV 41, wF 35; genu IV 34; tibia IV 28, φ $118, k T 35$; tarsus IV 78 long, 13 wide, w setiform, $33, r$ spiniform, $14, d 23, e 6, f 20, s 5.5, u 4.5, v 5.5, p$ and $q 2.5$, empodium 13, claw 20.
MALE. Unknown.
Distribution. Australia.

Material examined. Holotype and 2 paratypes.
Type material. Holotype female: AUSTRALIA: Intercepted in New Zealand: $1 / 1$ female (indicated) +2 (paratype) females, 9 Oct 1978, B. Sukha, pineapples, NZAC. Paratypes: $1 / 2$ females + holotype female, as holotype.
Habitat and host. Pineapple.
Etymology. The species is named in honor of the late Herbert Womersley, a famous Australian acarologist.
Remarks. Females of this newly described species, T. womersleyi, are similar to those of T. curvipenis Fain \& Fauvel in having a pair of eyespots on prodorsal shield, coxal plate II being broad, and having a slender spermathecal duct; but T. womersleyi differs from the latter in supracoxal seta scx being expanded at bases of pectinations (Fig. 161) rather than slender and tapering from base to tip (Fig. 25) and setae r of tarsus IV being spiniform (Fig. 162) rather than setiform (Fig. 27). Females of T. womersleyi are also similar to those of T. pacificus $\mathrm{sp} . \mathrm{n}$. in the presence of eyespots, broad coxal plate II and shape of $s c x$, but can be distinguished by setae r of tarsus IV being spiniform (Fig. 162) rather than setiform (Fig. 133), and the shape of spermathecal duct (Fig. 161, 131).

Tyrophagus xenoductus sp. n.

Fig. 164-173, Plates 4D, 5P, 9D, 13D, 14P, 15P, 19C, $20 \mathrm{O}, 24 \mathrm{C}, 29 \mathrm{C}, \mathrm{D}, 30 \mathrm{O}, 31 \mathrm{O}, 35 \mathrm{C}$
Diagnosis. Female. Eyespots present, faint; scx tapering from base to tip, with 8-10 moderate or short pectinations; d_{1} about $3.2(3.2-3.5) \times$ length of c_{1} and $2.8(2.8-3.3) \times$ length of $d_{2} ; d_{2}$ about $1.1 \times$ length of c_{1}; coxal plates I and II large, both with distinct concave posterior margins and both reaching the apex of their respective apodemes. Spermathecal duct small, narrowing rapidly from copulatory opening for a distance nearly $2.1 \times$ distance between sclerites of oviducts and then gradually forming a thin tube for a distance about $2.0 \times$ distance between sclerites of oviducts, and expanding rapidly near base of spermathecal sac, base of spermathecal sac small, forming a pair of sclerotised sturcture. Tarsus I ω_{1} and tarsus II ω slender and distally pointed; setae w and r of tarsus IV setiform. Male. Eyespots, coxal plates, solenidia I ω_{1}, and II ω as in female; d_{l} about 2.7 (2.7-2.8) \times length of c_{1} and 2.7 (2.7-2.8) \times length of $d_{2} ; d_{2}$ about $1.0 \times$ length of c_{1}; aedeagus short, with one major curve, nearly cylindrical in basal $2 /$ 3 and narrowing gradually in distal $1 / 3$, its internal diameter of distal $2 / 3$ linear, lateral arms supporting aedeagus turning outwards; setae w and r of tarsus IV setiform; ratio $(\mathrm{a}+\mathrm{b})$: $\mathrm{c}=3.3(3.1-3.3)$.

Description. Female (Fig. 164-168, Plates 4D, 5P, 9D, 13D, 14P, 15P)
Idiosoma. 318 (318-335) long, 188 (188-231) wide. Chelicera 77 (77-80) long, cheliceral seta cha distally truncated, 4.5 (4.5-5) long, subcapitular setae $m 27$ (27-30), palpal supracoxal seta elcp smooth, 11 (11-12) long, dorsal palptibial seta $16(16-18)$, lateral palptibial seta 11 (11-12), dorsal palptarsal seta 10 (10-12), palptarsal solenidion 4 (3-4). Dorsum. Prodorsal shield nearly pentagonal, its lateral and posteriolateral edeges slightly concave, 66 (66-71) long, 77 (77-82) wide between ve-ve. Eyespots present but not obvious. Grandjean's organ fin-ger-like (11-12 long), its basal lobe with 2-3 spiniform teeth. Supracoxal seta scx tapering from base to tip, with $10(8-10)$ moderate or short pectinations, 26 (26-27) long. Ratios: $v i: v e=2.1, s c i: s c e=1.8, s c i-s c i$: $s c i-s c e=$ 1.4 (1.2-1.4). Lengths of setae: vi 89 (89-95), ve 43 (4346), sci 169 (169-181), sce 96 (96-102); distances: vi-vi 13 (11-13), vi-ve 32 (32-34), sci-sci 27 (27-28), sci-sce 20 (20-23). Hysterosomal setae d_{1} about $3.2(3.2-3.5) \times$ length of c_{1} and $2.8(2.8-3.3) \times$ length of $d_{2} ; d_{2}$ about $1.1 \times$ length of c_{1}; lengths of setae: $c_{1} 34$ (33-34), $c_{2} 193$ (193205), $c_{p} 148$ (136-148), $c_{3} 53$ (53-60), $d_{1} 108$ (108-115), $d_{2} 38$ (35-38), e, 299 (299-331), $e_{2} 209$ (198-209), $f_{2} 328$ (328-332), $h_{l} 356$ (311-356), $h_{2} 321$ (321-344), $h_{3} 242$ (242-266); distances: $c_{1}-c_{1} 75$ (75-79), $c_{1}-d_{1} 48$ (43-48), $d_{1}-d_{1} 29$ (29-33), $d_{2}-$ gla 33 (33-39), $d_{1}-e_{1} 63$ (63-72), $e_{1}-e_{1} 69$ (69-86). Venter. Coxal plates I and II large, both with distinct concave posterior margins and both reaching the apex of their respective apodemes. Setae la 1.0 (1.0$1.1) \times$ length of coxal plate II, 42 (42-45), 3a 24 (24-25); $3 b 2.7$ (2.4-2.7)× length of $3 a, 64$ (59-64); g 21 (20-21), $4 a 63$ (63-67). Pseudanal setae, $p s_{1} 1.8(1.7-1.8) \times$ as long as $p s_{2}, 164$ (164-175) long, $p s_{2}$ about $3.9(3.9-4.8) \times$ length of $p s_{3}, 90(90-101)$ long, $p s_{3} 23$ (21-23). Adanal setae $a d_{1}$ very long, 105 (57-105), ad long, 61 (23-61), ad 22 (21-22). Copulatory opening supported by a circular sclerotised pad, 7 (7-8) in diameter, spermathecal duct short, narrowing rapidly from copulatory opening for a distance nearly $2.1 \times$ distance between sclerites of oviducts and then gradually forming a thin tube for a distance about $2.0 \times$ distance between sclerites of oviducts, expanding rapidly near base of spermathecal sac, base of spermathecal sac small, with a pair of sclerotised structure, distance between sclerites of oviducts $8(8-9)$.
Legs. Leg I. 186 (186-191) long; femur I 47 (45-47), $v F$ simple, 48 (48-50) long; genu I 32 (32-35), σ ' 42 (38-42), $\sigma " 25(25-31)$, I $\sigma^{\prime}: \sigma^{\prime \prime}=1.7(1.2-1.7), c G 38(38-40), m G$ 42 (38-42); tibia I 28 (28-32), 甲 112 (112-122), gT 38 (38-41), hT 39 (39-42); tarsus I 82 (82-90) long, 18 (1821) wide, ω_{1} slightly clavate and pointed at apex, 17 (1718) long, $\varepsilon 4$ (3-4), $\omega_{2} 6$ (5-6), $\omega_{3} 19$ (19-21), distance
between $a a$ and ω_{1} about 16 (13-16), aa 26 (24-26) long, ba 25 (24-25), wa 33 (30-33), ra 25 (23-25), la 20 (1720), $d 21$ (20-21), e 5 (5-6), f 14 (12-14) , $s .5$ (4.5-5), u and $v 5$ (4-5), p and $q 6$ (6-7), empodium 14 (13-14), claw 13 (11-13). Leg II. 180 (171-180) long; femur II 43 (43-46), vF 56 (51-56); genu II 31 (31-33), $\sigma 17$ (14-16), cG 33 (33-34), $m G 42$ (39-42); tibia II 27 (27-28), $\varphi 111$ (111-121), gT 35 (32-35), hT 39 (39-43); tarsus II 76 (76-79) long, 17 (17-19) wide, ω nearly cylindrical and tapering rapidly at apex, 23 (23-24) long, ba 24 (24-26), wa 31 (31-34), ra 27 (21-27), la 20 (20-22), d 27 (2729), $e 6$ (6-7), $f 10$ (10-13), $s 4.5$ (4.5-5), u and $v 4$ (4-5), p and $q 6$ (5-6), empodium 12 (12-13), claw 12 (11-12). Leg III. 195 (195-202) long; femur III 38 (38-40); genu III 31 (29-31), $\sigma 19$ (13-19), $n G 42$ (42-45); tibia III 27 (27-29), 甲 122 (109-122), kT 46 (39-42); tarsus III 86 (82-86) long, 16 (16-18) wide, w setiform, 33 (29-33) long, r setiform, 21 (21-26) long, $d 19$ (19-23), e 5 (5-6), $f 14$ (14-16), $s 5$ (5-6), $u 4$ (4-4.5), $v 5$ (5-6), p and $q 3$ (2.5-3), empodium 12 (10-11), claw 12 (10-12). Leg IV. 216 (216-225) long; femur IV 61 (58-61), $w F 43$ (4348); genu IV 39 (37-39); tibia IV 33 (33-35), $\varphi 114$ (108114), kT 40 (40-42); tarsus IV 90 (87-90) long, 14 (1415) wide, w setiform, 31 (31-33) long, r setiform, 22 (2225) long, $d 19$ (19-22), e 6 (6-7), $f 16$ (16-18), $s 6$ (5-6), $u 5$ (4-5), $v 5$ (5-6), p and $q 3$ (2-3), empodium 14 (1214), claw 11 (9-11).

Male (Fig. 169-173, Plates 19C, 20O, 24C, 29C, D, 30O, 310, 35C)
Idiosoma. 284 (267-284) long, 163 (163-180) wide. Chelicera 62 (60-62) long, cheliceral seta cha conical, 4 (4-5) long, subcapitular setae $m 22$ (22-25), palpal supracoxal seta elcp smooth, 10 (10-11) long, dorsal palptibial seta 13 (12-13), lateral palptibial seta 10 (9-10), dorsal palptarsal seta $9(9-10)$, palptarsal solenidion 3 (3-3.5). Dorsum. Prodorsal shield 57 (55-57) long, 62 (58-62) wide between $v e$-ve. Eyespots present but not obvious; Grandjean's organ finger-like 8 (8-9 long), its basal lobe with 2-3 spiniform teeth. $s c x$ as in female, 22 (19-22) long. Ratios: vi: ve $=2.0$, sci: sce $=1.7(1.7-1.8)$, sci-sci: sci-sce $=1.4$. Lengths of setae: vi 71 (66-71), ve 36 (3336), sci 165 (149-165), sce 93 (88-93); distances: vi-vi 10 (9-10), vi-ve 26 (26-28), sci-sci 25 (23-25), sci-sce 18 (16-18). Hysterosomal setae d_{1} about 2.7 (2.7-2.8)× length of c_{1} and $1.2(0.9-1.2) \times$ length of $d_{2} ; d_{2}$ about $1.0 \times$ length of c_{1}; lengths of setae: $c_{1} 27$ (22-27), $c_{2} 175$ (156175), $c_{p} 131$ (116-131), $c_{3} 35$ (30-35), $d_{1} 73$ (62-73), d_{2} 27 (23-27), $e_{1} 272$ (272-279), $e_{2} 207$ (198-207), $f_{2} 272$ (258-272), $h_{l} 292$ (284-292), $h_{2} 296$ (279-296), $h_{3} 219$ (206-219); distances: $c_{1}-c_{1} 68$ (62-68), $c_{1}-d_{1} 38$ (32-38), $d_{1}-d_{1} 28$ (28-31), d_{2}-gla 38 (32-38), $d_{1}-e_{1} 51$ (51-62), $e_{1}-e_{1} 76$ (72-76). Venter. Coxal plates I extending be-
yond apex of prosternal apodeme; coxal plates II broadly triangular, with posterior margin slightly convex. Setae $1 a$ $1.0 \times$ length of coxal plate II, 33 (27-33); $3 a 18$ (15-18); $3 b 2.7(2.7-2.9) \times$ length of $3 a, 48(43-48)$ long; $g 16(14-$ 16), $4 a 44$ (40-44). Aedeagus 16 (15-16) long, with one major curve, nearly cylindrical in basal $2 / 3$ and narrowing gradually in distal $1 / 3$, its internal diameter of distal $2 / 3$ linear, basal $1 / 3$ spindle-form, lateral arms supporting aedeagus turning outwards. Anal slit 51 (48-51) long, distance between anterior rim of anal slit and posterior margin of aedeagus 15 (15-17). Anal suckers about 16 (13-16) in diameter; anal discs 4 (3-4) in diameter, distances between right and left discs 33 (27-33). Pseudanal setae $p s_{1}$ about $3.1(3.1-3.2) \times$ length of $p s_{2}$, 145 (131145) long, $p s_{2} 4.3$ (4.3-4.9) \times length of $p s_{3}, 47$ (44-47) long, $p s_{3} 11(9-11)$; $p s_{2}-p s_{2} 1.8(1.7-1.8) \times$ distance $p s_{1}-$ $p s_{l}, p s_{1}-p s_{1} 18$ (17-18), $p s_{2}-p s_{2} 33$ (29-33).
Legs. Leg I. 151 (137-151)) long; femur I 37 (34-37), $v F$ simple, 39 (35-39) long; genu I 25 (22-25), σ ' 33 (29-33), $\sigma " 28$ (26-28), І σ ': $\sigma "=1.2$ (1.1-1.2), $c G 28$ (24-28), $m G$ 32 (26-32); tibia I 22 (19-22), ¢ 93 (89-93), gT 30 (2530), $h T 30$ (28-30); tarsus I 63 (59-63) long, 15 (14-15) wide, ω_{1} obviously clavate and rapidly tapering at apex, 15 (13-15) long, $\varepsilon 3(3-4), \omega_{2} 4(4-4.5), \omega_{3} 13(13-14)$, distance between $a a$ and ω_{1} about 8 (7-8), $a a 17$ (16-17) long, ba 19 (17-19), wa 30 (27-30), ra 16 (15-16), la 15 (12-15), d 20 (17-20), e 5 (5-6),f $9(9-11), s 4(4-4.5), u$ and $v 4(3-4), p$ and $q 6(5-6)$, empodium 12 (11-12), claw 13 (11-13). Leg II. 147 (138-147) long; femur II 36 (33-36), vF 43 (39-43); genu II 27 (26-27), б 18 (16-18), $c G 23$ (22-23), $m G 31$ (29-31); tibia II 22 (20-22), $\varphi 98$ (98-101), gT 23 (19-23), hT 32 (29-32); tarsus II 61 (59-61) long, 13 (12-13) wide, ω almost cylindrical, 17 (16-17) long, ba 19 (17-19), wa 30 (27-30), ra 21 (1921), la 15 (14-15), d 20 (18-20), e 5 (5-6), f9 (9-11), s 5 (5-5.5), $u 4, v 5$ (4.5-5), p and $q 3$ (3-4), empodium 11 (10-11), claw 11 (10-11). Leg III. 150 (150-152) long; femur III 32 (30-32); genu III $25(24-25)$, $\sigma 21$ (16-21), $n G 36$ (33-36); tibia III 23 (23-24), $\varphi 102$ (99-102), kT 33 (31-33); tarsus III 67 (67-68) long, 12 (11-12) wide, w setiform, 21 (21-23) long, r setiform, 19 (19-21) long, $d 18$ (18-20), e 5 (5-6), f14(14-15), s 5 (4.5-5), u 3 (34), $v 5$ (4.5-5), p and $q 3$ (2-3), empodium 11 (11-12), claw 10 (9-10). Leg IV. 171 (163-171) long; femur IV 35 (34-35), wF 29 (27-29); genu IV 30 (30-31); tibia IV 25 (23-25), 甲 86 (86-91), kT 23 (22-23); tarsus IV 66 (6466) long, 13 (12-13) wide, w and r situated at level between suckers, w setiform, 24 (22-24) long, r setiform, 16 (13-16) long, distances between basal rim of tarsus IV and proximal sucker $d 26(24-26)$, between d and $e 17$ (14-17), between e and $f 13(12-13)$, ratio ($\mathrm{a}+\mathrm{b}$): $\mathrm{c}=3.3$ (3.1-3.3), $f 17(17-19)$ long, $s 5(5-5.5), u 4(3-4), v 5$ (5-
$6), p$ and $q 3(2-3)$, empodium $12(10-12)$, claw $8(8-9)$. Distribution. Tonga.
Material examined. Holotype and 7 paratypes.
Type material. Holotype female: TONGA: Intercepted in New Zealand: $1 / 1$ female (indicated), 1 allotype male, 1 (paratype) male, 1 (paratype) tritonymph [+ Tyrophagus pacificus 1 female] (P.Q.A. 8563), 9 Mar 1977, S. Hevvies, bananas, NZAC. Paratypes: 1/ 2male, 1 tritonymph + holotype female, as holotype. TONGA: Intercepted in New Zealand: $1 / 2$ females [+ Tyrophagus pacificus 2 females] (P.Q.A. 100), 27 Apr 1977, J. Bongiovanni, bananas, MAF/A. 1/2 females [+ Tyrophagus pacificus 1 female + Calvolia sp. 9 females] (P.Q.A. 859), 6 Jan 1978, S.M. Aldridge, bananas, MAF/A.

Habitat and host. Banana.

Etymology. The species name is a combination of xeno (foreign or alien) and ductus (a duct) for the shape of spermathecal duct.

Remarks. This species is distinct in having a slender, distally pointed ω_{1} on tarsus I. Its females have a very small sclerotised base of spermathecal sac which is slightly larger than that of T. javensis (Oudemans) and T. robertsonae Lynch. The male of this species has a short aedeagus which is cylindrical in basal $2 / 3$ and narrowing gradually in distal $1 / 3$.

REFERENCES

Al-Safadi, M. M. 1987. The life cycle of the Acari Tyrophagus similis. Journal of Zoology 213(1): 141146.

Angelkova, E. B. 1982. Acaroid mites (Acarina, Acaridiae) from nests of birds in Bulgaria. Acta Zoologica Bulgarica 20: 107-109.
Baker, E. W.; Delfinado, M. D.; Abbatiello, M. J. 1976. Terrestrial mites of New York II. Mites in birds' nests (Acarina). Journal of the New York Entomological Society 84(1): 48-66.
Bollaerts, D.; Breny, R. 1951. Les acariens nuisibles aux matières entreposées. Revue de l'Agriculture Bruxelles 4: 738-764.
Bostrom, S.; Johansson, E.; Harfast, B.; Lundqvist, L.; Backman, I.; Rosen, E. von; Hage-Hamsten, M. van. 1997. Characterization of the mite fauna (Acari) in Swedish barn dust. International Journal of Acarology 23(2): 127-132.
Cindea, E. 1978. Present state of research on the control of the pathogens and pests of vegetable crops. Probleme de Protectia Plantelor 6(4): 421-443.
Cobanoglu, S.; Bayram, S. 1998. Mites (Acari) and flies (Insecta: Diptera) from natural edible mushrooms (Morchella: Ascomycetes) in Ankara, Turkey. Bulletin \& Annales de la Societe Royale Belge d'Entomologie 134(3): 187-198.
Cockayne, A. H.; Waters, R. 1916. The chaff-mite. Methods of control. New Zealand Journal of Agriculture 12:372-379.
Crosby, T. K.; Dugdale, J. S.; Watt, J. C. 1998. Area codes for recording specimen localities in the New Zealand subregion. New Zealand Journal of Zoology 25: 175183.

Cusack, P. D.; Evans, G. O.; Brennan, P. A. 1975. A survey of the mites of stored grain and grain products in the Republic of Ireland. Scientific Proceedings of the Royal Dublin Society, Serie B 3(20): 273-329 (only abstract seen).
Czaikowska, B.; Vrie, M. van de; Kropczynska, D. 1988. Mites of the genus Tyrophagus as pests of ornamentals in greenhouses. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 53(2b): 799-809.
Estebanes-Gonzalez, M. L. 1997. Acarofauna of nests of wild birds in Mexico. Acta Zoologica Mexicana 71: 115.
——; Rodriguez-Navarro, S. 1991. Observations on some mites of the families Tetranychidae, Eriophyidae, Acaridae and Tarsonemidae (Acari), in horticultural crops from Mexico. Folia Entomologica Mexicana 83: 199-212 (only abstract seen).
Fain, A. 1976. Acariens récoltés par le Dr. J. Travé aux îles subantarctiques. II. Familles Acaridae, Anoetidae, Ereynetidae et Tarsonemidae (Astigmates et Prostigmates). Acarologia 18(2): 302-328.
_-1977. Nouvelles observations sur les Acariens récoltés par le Dr J. Travé aux îles Saint-Paul et Nouvelle-Amsterdam (Astigmates). Acarologia 18(3): 553-567.
-1985. Observations sur les genres Suidasia Oudemans, 1905, Tyrophagus Oudemans, 1924 et Madaglyphus Fain, 1971 (Acari, Acaridae). Revue de Zoologie Africaines 99: 159-164.
——; Chmielewski, W. 1987. The phoretic hypopi of two acarid mites described from ant's nests : Tyrophagus formicetorum Volgin, 1948 and Lasioacarus nidicolus Kadzhaja and Sevastianov, 1967. Acarologia 28(1): 53-61,
; Fauvel, G. 1993. Tyrophagus curvipenis n. sp. from an orchid cultivation in a greenhouse in Portugal (Acari: Acaridae). International Journal of Acarology 19(1): 95-100.
Fan, Q.-H.; Zhang, Z.-Q. 2004. Revision of Rhizoglyphus Claparède (Acari: Acaridae) of Australasia and Oceania. Systematic and Applied Acarology Society, London. 374 pp .

Fischer, S. 1993. Observation of a new pest of cucumber in western Switzerland, Tyrophagus neiswanderi Johnston \& Bruce (Acari, Acaridae). Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture 25(2): 103-104.
Gervais, F. L. P. 1844. Acarides. In Walckenaer's Histoire Naturelle des Insectes. Aptères. Volume 3, pp. 260266 (not seen).
Giustina, W. D. 1981. The pests of the aerial parts of cucumber grown under cover. Phytoma 328: 9-12.
Grandjean, F. 1939. La chaetotaxie des pattes chez les Acaridae. Bulletin de la Société zoologique de France 64: 50-60.
Griffiths, D. A. 1970. A further systematic study of the genus Acarus L., 1758 (Acaridae, Acarina), with a key to species. Bulletin of the British Museum (Natural History) Zoology 19(2): 85-118.
1979. The morpho-species and its relationship to the biological species in the genus Tyrophagus (Acaridae, Acarina). In: Rodriguez, J. G. (ed) Recent Advances in Acarology, Proceedings of the 5th International Congress of Acarology, East Lansing, Michigan 1: 199-212.
——; Atyeo, W. T.; Norton, R. A.; Lynch, C. A. 1990. The idiosomal chaetotaxy of astigmatid mites.Journal of Zoology 220: 1-32.
Hajiqanbar, H. R.; Irani-Nejad, K. H.; Chaichi, P. T. (2002) Records of astigmatic mites of family Acaridae from sugarbeet fields in Miandoab Plain. Agricultural Science (Tabriz) 12(2): 1, Pe1-Pe10 (abstract).
Hallas, T. E.; Solberg, H. 1989. Mites of stored hay on the Faroe Islands (Acari). Entomologiske Meddelelser 57(3): 151-155.
Halliday, R. B. 1998. Mites of Australia: A Checklist and Bibliography. CSIRO Publishing, Melbourne. 317 pp .

Hughes, A. M. 1948. The Mites Associated with Stored Food Products. Ministry of Agriculture and Fisheries. His Majesty's Stationery Office, London. 168 pp.
-1961. The mites of stored food. Ministry of Agriculture, Fisheries and Food, Technical Bulletin no. 9. Her Majesty's Stationery Office, London. 287 pp.
1976. The mites of stored food and houses, $2^{\text {nd }}$ ed. Ministry of Agriculture, Fisheries and Food, Technical Bulletin no. 9. Her Majesty's Stationery Office, London. 400 pp .
ICZN (International Commission on Zoological Nomenclature) 1985. Opinion 1298. Tyrophagus Oudemans, 1924 (Acarina): Clarification of name of type species and conservation. Bulletin of Zoological Nomenclature 42: 124-127.

Johnston, D. E.; Bruce, W. A. 1965. Tyrophagus neiswanderi, a new acarid mite of agricultural importance Research Bulletin of Ohio Agricultural Experimental Station 977: 1-17.

Jonge, J. T. de 1988. Remarkable mites and insects in and around buildings in 1986. Entomologische Berichten 48(1): 18-19.
Kazhdaya, G. Sh. 1996. Some data on acaroid mites in Saarland (with description of variability of Forcellinia diamesa, Acaroidea, Acariformes). Zoologicheskii Zhurnal 75(4): 620-624.
Klimov, P. B.; O’Connor, B. M. 2003. Phylogeny, historical ecology and systematics of some mushroomassociated mites of the genus Sancassania (Acari :

Acaridae), with new generic synonymies. Invertebrate Systematics 17(4): 469-514.
Laffi, F. 1980. A mite injurious to melon seed-beds: Tyrophagus similis Volgin. Informatore Fitopatologico 30(7/8): 17-21.
Leskinen, L.; Klen, T. 1987. Storage mites in the work environment of farmers. European Journal of Respiratory Diseases, 71, supplement No. 152: 101111.

Li, C. 1999. Preliminary study of the acaroid mites breeding in stored Chinese traditional medicinal materials. Chinese Journal of Parasitic Disease Control 12(1): 72-73.
Lo, P. L. 1995. Size and fecundity of soft wax scale (Ceroplastes destructor) and Chinese wax scale (C. sinensis) (Hemiptera: Coccidae) on citrus. New Zealand Entomologist 18: 63-69.
Lynch, C. A. 1989. Two new species of the genus Tyrophagus (Acari: Acaridae). Journal of Zoology 219(4): 545-567.
Martin, N. A.; Workman, P. 1985. Pest control in boxes of Cymbidium orchid flowers with dichlorvosimpregnated plastic. Proceedings, New Zealand Weed and Pest Control Conference 38: 169-171.
Meyer, M. K. P.; Rodrigues, M. C. 1966. Acari associated with cotton in Southern Africa (with reference to other plants). Garcia de Orta 1(2): 1-33.
Michael, A. D. 1903. British Tyroglyphidae vol. 2. Ray Society, London. 183 pp .
Mohanasundaram, M.; Parameswaran, S. 1991. Record of four mites associated with decaying or rotting agricultural crops in Tamil Nadu. Madras Agricultural Journal 78(1-4): 88.
Nakao, H.; Kurosa, K. 1988. Description of four species of acarid mites newly recorded from Japan, with reference to the damage caused to crops (Acari: Astigmata). Japanese Journal of Applied Entomology and Zoology 32(2): 135-142.
Oudemans, A. C. 1906. Review of the Acari hitherto found in New Guinea. Nova Guinea 5(1): 101-162.
-1916. Myrmekofile Acari uit Salatiga. Entomologische Berichten 4(88): 266-268.
_-1924a. Acarologische Aanteekeningen LXXIV. Entomologische Berichten 136(VI): 241-260.
-1924b. Acarologische Aanteekeningen LXXV. Entomologische Berichten 136(VI): 265-274.

- 1924c. Acarologische aanteekeningen LXXVII. Entomologische Berichten 136(VI): 317-336.

Papaioannou-Souliotis, P. 1991. House dust mites in Attiki. Annales de l'Institut Phytopathologique Benaki 16(2): 105-114.
Putatunda, B. N.; Abrol, D. P. 2003. Mites associated with bees in Jammu and Kashmir, India. Zoos' Print Journal 18(2): 1021-1024.
Ramsay, G. W. 1977. Arthropods associated with the Polynesian rat on the Tokelau Islands. New Zealand Journal of Zoology 4(4): 393-394.
——; Paterson, S. E. 1977. Mites (Acari) from Rattus species on Raoul Island. New Zealand Journal of Zoology 4(4): 389-392.
Reynaud, N.-C.; Gevrey, J.; Demont, P. 1981. Tyrophagus longior, a mite infesting a butcher's shop. I. Identification and the incubation period of eggs. Bulletin de la Societe des Sciences Veterinaires et de Medecine Comparee de Lyon 83(3): 135-138.
Rimbaud, E. 1983. First record of Tyroglyphus longior associated with canine dermatitis in Uruguay. Veterinaria, Uruguay 19(85): 70-74
Robertson, P. L. 1946. Tyroglyphid mites in stored products in New Zealand. Transactions of the Royal Society of New Zealand 76(2): 185-207.
-1959. A revision of the genus Tyrophagus, with a discussion on its taxonomic position in the Acarina. Australian Journal of Zoology 7(2): 146-181.
_-1961. A morphological study of variation in Tyrophagus (Acarina), with particular reference to populations infesting cheese. Bulletin of Entomological Research 52: 501-529.
-1981. Tyrophagus Oudemans, 1924 (Acarina): proposals to clarify the name of the type species and to conserve the name of an important pest species. Bulletin of Zoological Nomenclature 38: 125-129.
Sadieva, B. E. 1984. A mite and the pathogen of brown mosaic. Zashchita Rastenii 7: 20.
Samšiò́k, K. 1962. Beiträge zur Kenntnis der Gattung Tyrophagus Oudemans. Èasopis Èeskoslovenské Spoleènosti Entomologické 59: 266-280.
Schrank, F. P. 1781. Enumeratio Insectorum Austriae Indigenorum. August Vindelicor, Klett. 548 pp (not seen).
Southcott, R. V. 1976. Arachnidism and allied syndromes in the Australian region. Records of Adelaide Children's Hospital 1: 97-186.

Studzinski, A.; Malachowska, D. 1973. The occurrence of Acarina on cruciferous plants (Cruciferae) in Poland in the years 1970-1971. Prace Naukowe Instytutu Ochrony Roslin 15(2): 153-166. (abstract).
Teng, B.; Qiu, Z. X.; Wang, H. 1988. Investigation of mite infestation of respiratory tract in Chinese herb workers. Chinese Journal of Parasitic Disease Control 1(1): 38-39, 77.
Türk, E.; Türk, F. 1957. Systematik und Ökologie der Tyroglyphiden Mitteleuropas. In: Stammer, H. J. (ed) Beiträge zur Systematik und Okologie mitteleuropaischer Acarina, Bd 1:3-226.
Turk, F. A. 1953. A synonymic catalogue of British Acari. Annual Magazine of Natural History 6: 81-99 (not seen).

USDA 1981. New North American record. Plant Pest News 1(2): 2.
Volgin, V. I. 1949. Materials on systematics of mites of the genus Tyrophagus Ouds., 1923 (Tyroglyphidae, Acarina). Doklady Akademii Nauk USSR, Zoology 65(3): 385-388.
Walter, D. E.; Hudgens, R. A.; Freckman, D. W. 1986. Consumption of nematodes by fungivorous mites, Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia 70(3): 357-361.
Wang, X. Z. 1985. A survey of the Acaroidea occurring in the east China. Contributions from Shanghai Institute of Entomology 5:351-357.
Wildies, T. 2000. On the morphology of Tyrophagus tropicus Robertson, 1959 (Acari: Acaridae). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 13(161): 147-150.
Womersley, H. 1941. Studies in Australian Acarina. (2). Tyroglyphidae (s. 1.). Records of South Australian Museum 6: 451-488.
Zakhvatkin A. A. 1941. Fauna of U.S.S.R. Arachnoidea. Vol. VI, No. 1: Tyroglyphoidea [Acari]. American Institute of Biological Sciences, Washington DC. 573 pp. (Translation by Ratcliffe, A.; Hughes, A. M., 1959).

Zakladnoi, G. A. 2003. Can phosphine control grain mites? Zashchita i Karantin Rastenii No.9: 46-47.
Zhang, Z.-Q. 2003 Mites of Greenhouses: Identification, Biology and Control. CABI Publishing, Wallingford, UK, xii + 244 pp.

Appendix 1. Collection details for specimens examined. Species listed in alphabetical order according to species in New Zealand, followed by Australasian and Oceanian species not present in New Zealand (p. 67)

Species present in New Zealand

Tyrophagus communis sp. n.

Type material. Holotype female: NEW ZEALAND: AK: Pukekohe, Bioforce Ltd., $1 / 1$ female (indicated) +7 (paratype) females, 17 Nov 2004, J. Thompson, culture with Neoseiulus cucumeris, NZAC. Paratypes: $1 / 7$ females + holotype female, as holotype. 3/13 females, 13 males + allotype male, as allotype. HB: Hastings, Zonda Research, 5/20 females, 7 males, 3 tritonymphs, 1 protonymph, 1 larva, 18 Oct 1999, J. Mitchell, culture, NZAC. Zonda Research, $1 / 1$ male (indicated) +3 (paratype) females, 6 (paratype) males, 28 Oct 1999, L. Rako, "new culture", NZAC.
Other material NEW ZEALAND: AK: Auckland, $1 / 1$ female, 2 males (J10724), 15 May 1948, W. Carter, fungus culture No. 119, SAM. Auckland, 1/numerous females and males (J10727), 3 Jul 1944, D. Spiller, glass surface in house, SAM. Auckland, $3 / 8$ females, 1 male [+ Rhizoglyphus sp. 5 females, 5 tritonymphs] (P.Q.A. 341), 30 Jun 1966, N.H. Hyde, garlic for export, MAF/A. 1/2 females, 1 male [+ Tyrophagus curvipenis 2 females, 3 males] (P.Q.A. 3325), 9 Oct 1972, T. Geldard, export garlic, MAF/A. Auckland, 1/ 1 female, 1 male, 1 tritonymph [+ Tyrophagus longior 1 male, 8 tritonymphs] (A6181), 26 Nov 1979, G. Gibson, strawberry, MAF/A. Auckland, Puketutu I, Manukau Harbour, 1/1 female [+ Tyrophagus curvipenis 1 male], Oct 1980, J. Clearwater, citrus borer, dead larva in wood, NZAC. Henderson, $1 / 1$ male [+ Tyrophagus longior 1 female, 3 males] (A 213), 24 Nov 1981, collector unknown, strawberries for export, MAF/A. Auckland, 2/16 females, 13 males, 30 Aug 1982, L. Clark, wheat stores in lab., custom house, MAF/A. Howick: Botany Rd., $1 / 1$ female, 1 male [+ Tyrophagus longior 1 female], 8 Nov 1985, D.C.M. Manson, strawberry fruit, MAF/A. Auckland, Mt Albert Research Centre, $1 / 3$ females [+ Tyrophagus neiswanderi 1 female], 3 Jul 1987, D. Allen, scale culture Rm 3, NZAC. Pukekohe Research Orchard, $2 / 5$ females, 3 males [+ Tyrophagus neiswanderi 2 females, 2 males] (1, 2), 5 Mar 1991, N.A. Martin, cucumber leaf sprayed with dicofol, NZAC. Auckland, Drury, 328 Karaka Rd, Hothouse, $2 / 2$ females, 16 Jan 2005, L. Howe, Capsicum fruit: BO, NZAC. Auckland, Drury, 328 Karaka Rd., Hothouse, $1 / 1$ female, 17 Jan 2005, L. Howe, Capsicum fruit: BP+BO, NZAC. Auckland, Drury, 328 Karaka Rd., Hothouse, $1 / 1$ female [+ Mesostigmata 1 nymph], 17 Jan 2005, L. Howe, Capsicum fruit: 9011, NZAC. Auckland, Drury, 328 Karaka Rd., Hothouse, 1/1 female, 17 Jan 2005, L. Howe, Capsicum fruit: BN+BO, NZAC. Auckland, Drury, 328 Karaka Rd., Hothouse, 5/4 females, 1 male, 18 Jan 2005, L. Howe, Capsicum fruit, NZAC.Auckland, Drury, 328 Karaka Rd., Hothouse, 3/3 females, 18 Jan 2005, L. Howe, Capsicum fruit: BO, BP, BO+BP, NZAC. Auckland, Drury, 328 Karaka Rd., Hothouse, 3/1 female, 2 males, 19 Jan 2005, L. Howe, Capsi-
cum fruit, NZAC. Mangere, NZ Gourmet, 16/34 females, 13 males, 24 Jan 2005, L. Howe, Capsicum fruit, NZAC. OL: Queenstown, Coronet Peak, $1 / 1$ female, 2 males, 24 Apr 1978, A. Brown, spoon from kitchen of a house, MAF/ A. GB: Gisborne, $1 / 1$ female, 1 male (P.Q.A. 5281), 21 May 1981, M. Wing, garlic, MAF/A. MB: Blenheim, $1 / 5$ females, 2 males, 1 tritonymph, 18 Jul 1958, collector unknown, strawberry tree fruit, MAF/A. MC: Lincoln, 1/6 females, 6 males, 8 May 1978, P.A. Burnett, garlic in plastic bag, MAF/A. Christchurch, near Sth New Brighton, 1/1 female, 2 males, 8 Nov 1976, Mrs James, "Kai-iwi" foil wrapped cheese, MAF/A. Christchurch, $1 / 11$ females, 7 males (R. 2513), 14 Sept 1977, C. Buckley, fish house, MAF/A. Christchurch, $1 / 9$ females, 4 males (R. 3870), 11 May 1982, collector unknown, beans in kitchen cupboard, MAF/A. ND: Kaitaia, $1 / 5$ females, 2 males, 1 tritonymph, 1 protonymph, 20 Jun 1979, P.S. Bryant, California Mission, MAF/A. RI/ WA: Woodville, $1 / 19$ females, 5 males, 3 tritonymphs, 2 protonymphs, 1 Aug 1956, L.G. Morrison, Molactrate molasses blocks, MAF/A. WI: Wanganui, $1 / 6$ females, 3 males, 7 tritonymph, 1 protonymph [+ Tarsonemidae 1 female], 19 Sept 1979, S.M. Nesbit, wheat grains ex silo, MAF/A. WI/WN: Manawatu dairy factory, $1 / 1$ female, 28 Apr 1975, D.C.M. Manson, pallet and bag scrapings, dried milk powder, MAF/A. WN: Wellington, Wallaceville, $1 /$ females $+T$. vanheurni (J10726), Apr 1946, L.K. Whitton, pollen from hive, SAM. Levin, 1/8 females (19348), 19 Aug 1985, F. Jarmai, beehive, MAF/A. Levin, $1 / 6$ females, 3 males, 14 May 1982, collector unknown, house, MAF/A. Levin, 1/28 females, 4 males, 13 Dec 1979, A. Body, raspberry jam, MAF/A. Wellington, Thorndon, $1 / 2$ females, 9 males [+ Acarus sp. 1 female] (M 2248), 3 Jul 1984, P. Butler, food stuffs in household pantry, MAF/A. Wellington, Lower Hutt, 1/1 female (K. 253), 22 Mar 1978, R. Waters, mushrooms, MAF/A. WO: Hamilton area, $1 / 5$ females, 4 males, 1 tritonymph, date unknown, Blade's Fumigation Ltd, kitchen in farmhouse, MAF/A. Waikato River, Hamilton, Univ. of Waikato, $1 / 1$ female [+ Tyrophagus vanheurni 1 male], date unknown, J. Boubee, host unknown, NZAC. Specific locality unknown: $1 / 4$ females, 17 Mar 1944, P.L. Robertson, dead Prionoplus reticularis larv., NZAC. 1/9 females, 15 males, date unknown, S.L. Haylett, in buffet, NZAC. 1/3 females [+ Tyrophagus longior 1 male] (A6117), 15 Nov 1979, G.J. Higgins, strawberries, MAF/A. 1/1 female (A. 4173), 18 Oct 1978, B.N. Bain, strawberries, MAF/ A. $1 / 1$ female (P.Q.A. 3245), 20 May 1978, N. Lomax, debris in container, MAF/A. 1/2 females (P.Q.AK. 6196), 16 Jul 1974, N. Sanison, garlic, MAF/A. 2/7 females (AK. 6665), 17 Apr 1975, R.D. Hay, Feijoa, MAF/A. $1 / 2$ females, 3 males, 1 tritonymph (P.Q.AK. 8240), 22 Oct 1975, N.A.P. Lomax, asparagus, MAF/A. $1 / 10$ females, 1 tritonymph [+ Glycyphagus sp. 1 tritonymph] (A. 184), 28 Jul 1977, R. Blackwell, garlic for export, MAF/A. 1/4 males, 1 tritonymph (P.Q.A. 1251), 26 Apr 1978, W. Geaney, garlic, MAF/A. $1 / 2$ females, 1 tritonymph (P.Q.A. 173), 20 May 1965, B. Short, ex matua on nutmeg, MAF/A. 4/9 females, 5 males, 7 tritonymphs, 4 protonymphs (M. 77), Jul 1961, L.G. Morrison, saint paulia, MAF/A. Intercepted in Queensland, Australia: $1 / 1$ female (DPIQ 350QA), 27 May 1996, collector unknown, fresh garlic Q7491, AQIS/ QLD. 1/1 female (Q24796), 19 Oct 2001, collector unknown, capsicums, AQIS/QLD. 1/1 female (Q25143), 15

Jan 2002, collector unknown, capsicums, AQIS/QLD. 1/1 female (Q103598), date unknown, collector unknown, capsicums, AQIS/QLD. Intercepted in New South Wales, Australia: $1 / 1$ female, 4 males, 1 tritonymph (P.Q.A. 766), 29 Jul 1964, P.C. Hunt, copra, MAF/A. 1/2 females (N28555), 1999, collector unknown, garlic, AQIS/NSW. 1/ 1 male (N29013, col: 57717), 21 Jun 1999, collector unknown, persimmons, AQIS/NSW. $1 / 1$ female, 1 male, 1 tritonymph [+ Tyrophagus curvipenis 1 female, 1 tritonymph] (N35085), 25 Jul 2000, collector unknown, onions, AQIS/NSW. 1/1 female, 1 tritonymph (N44016, \#83219), 3 Apr 2002, collector unknown, garlic, AQIS/ NSW. 1/2 females (N108419), 28 Oct 2004, collector unknown, capsicum, AQIS/NSW. 1/1 female (N108461), 28 Oct 2004, collector unknown, capsicum, AQIS/NSW. 1/1 female + Tyrophagus putrescentiae 3 females (N108460), 3 Nov 2004, collector unknown, tulip bulbs, AQIS/NSW.
AFRICA: Intercepted in New Zealand: $1 / 2$ females [+ Tyrophagus tropicus 1 female + Proctolaelaps pygmaeus 1 female] (P.Q.A. 2786), 3 Apr 1979, K. Shaw, cocoa beans, MAF/A.
ARGENTINA: Intercepted in New Zealand: $1 / 2$ females, 3 males (P.Q.A. 2542), 25 Oct 1977, B. Barnett, Citrus limon, MAF/A.
AUSTRALIA: ACT: Canberra, D.S.I.R., 1/numerous females and males (J10730), Mar 1945, D. W., silverfish culture, SAM. Canberra, 1/2 females, 3 males (J10771), Jul 1957, S.W. Mouly, Locusta migratoria, SAM. Canberra, 3/16 females, 1 male (J10794, J10795, J10796), Jul 1907, collector unknown, culture of Tineola biselliella, SAM. Canberra, National Botanic Gardens, $5 / 5$ males, 21 Apr 1992, S. Walker, agar tissue culture of orchids, ANIC. Australian National University, $9 / 5$ females, 6 males, Aug 1993, E.J. Wright, culture of Tribolium, ANIC. Canberra, CSIRO stored grain lab, 10/12 females, 1 tritonymph, 17 Dec 2002, D. Rees, lab culture of Psocoptera, ANIC. NSW: New South Wales, Sydney, Northern Suburbs Hospital, $1 / 2$ mites (J10720), Sept 1945, collector unknown, human urine, SAM. Sydney, $1 / 5$ females (J10732), Jul 1943, H. Gordes, sheep faeces, SAM. Sydney, $5 / 5$ females, 1 male, 8 Aug 1989, E.J. Wright, Sydney Grain Terminal, ANIC. Batemans Bay, 11/ 7 females, 4 males (no. 92/137), Apr 1992, M. Evers, mixed grain, horse fodder, young stock foods, ANIC. South Coogee, 5/4 females, 1 male, 17 Jul 1994, N. Hall, mealworm culture, ANIC. Gundaroo, $1 / 1$ female, Jan 1995, K.L. Strong, rooster feathers "Tintinhull", ANIC. Bungendore, 10/28 females, 7 males, 8 Jan 1996, D. Taylor, chaff, ANIC. Barmedan, Graincorp silo, 7/7 females, 24 Jul 1998, N. Starick, damp grain, ANIC. near Griffith, Cocoparra National Park, 24/23 females, 1 male, 27 Jul 1998, D. James, sample C7, ANIC. Gosford Horticultural Institute, 5/56 females, 9 males, 4 tritonymphs, 7 Aug 2003, M. Steiner, glasshouse, sample \#1047, ANIC. QLD: Woodford District, 1/ females (J10721), Oct 1946, H. J., soil, SAM. Cairns, $2 /$ 10 females (J10751, J10752), 31 Aug 1949, J.G. Brooks, house, SAM. 1/18 mites (J10772), 4 Jan 1952, E.H. Derrick, from culture of Sporotrichum, SAM. Queensland, Oakey, 5/2 females, 3 males, 1 Nov 1992, B. Bridgeman, dust in grain silo, ANIC. Queensland, Oakey, 23/11 females, 12 males, 1 Nov 1992, B. Bridgeman, stored sorghum, ANIC. SA: Adelaide, $1 / 3$ females + Winterschmidtidae 1 female (J10717), Aug. 1933, H. Womersley, on Cryptes baccarum, SAM. Adelaide, 1/females (J10718), Aug 1939, H. Womersley,
on decaying coconut, SAM. Adelaide, $4 / 5$ females, 18 males, 3 tritonymphs, 1 protonymph (J10758, J10759, J10760, J10761), 12 Jun 1952, collector unknown, soya beans, Nutrition Lab., SAM. Port Adelaide, $1 / 3$ females, 1 male, 1 tritonymph (J10767), Jan 1954, collector unknown, bark scrapings, SAM. Port Adelaide, $2 / 6$ females, 2 males, 1 tritonymph $+T$. javensis 4 females (J10766, J10767), Jan 1954, H. Womersley, bark scrapings, SAM. South Australia, Stirling, Cleland Wildlife Park, $1 / 1$ male (ANIC IAS 2002148), 30 Oct 2002, collector unknown, kangaroo diet, ANIC. WA: Perth, $1 / 2$ females, 2 males (J10722), 27 Apr 1931, H. Womersley, SAM. Lelu Island: Kusaie, 1/1 female (J10774), 24 Feb 1953, JEG Cla, Nipa palm leaves, SAM. Specific locality unknown: $1 / 3$ females (J10754), 91-A.38(1A), A.N.A.R.E., rabbit, SAM. Nanphatu, $1 / 3$ females, 2 males (J10756), 7 Oct 1951, collector unknown, Nauphota (cockroach), SAM. 1/11 females, 5 males (J10757), Oct 1948, water jar, cockroach colony, SAM. Moke, 7/2 females, 3 males, 2 protonymphs (J10775, J10776, J10777, J10778, J10780, J10782, J10783), 2 Oct 1957, J.H. B., dust-bed, cracks \& floor, Tultols house, SAM. Moke, $1 / 1$ female, 1 male + Mesostigmata 1 (J10779), 2 Oct 1957, J.H. B., material on living room floor, Tultols house, SAM. Moke, 1/1 male (J10781), 2 Oct 1957, J.H. B., dust beneath banana leaf matting, Kuree house, No. 2 village, SAM. Q.I. M.R., $1 / 5$ males, 3 tritonymphs (J10789), 16 Oct 1948, H.J., from Calolampra colony, SAM. 1/1 female (Q25293), 5 Feb 2002, collector unknown, palm seed, AQIS/QLD. Intercepted in New Zealand: $1 / 1$ female, 1 male, 1 tritonymph (P.Q.A. 575), 18 Apr 1962, collector unknown, pineapple, MAF/A. $1 / 4$ females, 3 males, 1 tritonyhmph (P.Q.A. 1154), 27 May 1970, J.N. Garnham, Kentia palm seed, MAF/A. 1/4 females (P.Q.A. 6101), 29 Apr 1974, L.M. Lysaght, Kentia palm, MAF/A. 1/4 females (P.Q.M. 2041), 26 May 1977, J. Jones, Cissus antarctica seed, MAF/ A. $1 / 1$ female $[+$ Tyrophagus similis 3 females] (P.Q.A. 3104), 15 Apr 1978, J. Jones, Narcissus bulbs, MAF/A. 1/5 females, 3 males (P.Q.M. 256), 28 Aug 1978, P. Cody, Virgilia divaricata, MAF/A. $1 / 3$ females, 1 male (P.Q.A. 4797), 2 Apr 1979, L. Dollimore, host unknown, MAF/A. 1/2 females (P.Q.A. 308), 18 Dec 1981, M.R. Wing, seeds, MAF/A. $1 / 1$ female (NPPRL 09/2002/1036), 5 Mar 2002, collector unknown, Hyacinth air cargo, MAF/A. 1/1 female (NPPRL 09/2002/1038), 5 Mar 2002, collector unknown, Iris bulbs, air cargo, MAF/A. $1 / 2$ females, 1 tritonymph (NPPRL 09/2002/4408), 11 Oct 2002, collector unknown, Coffea arabica, MAF/A. 1/1 female (NPPRL 09/2003/ 4850), 25 Sept 2003, collector unknown, tomatoes, MAF/ A. $1 / 1$ female (NPPRL 09/2002/1031), date unknown, collector unknown, Ranunculus bulb, MAF/A. $1 / 1$ female (NPPRL 09/2002/1033), date unknown, collector unknown, Freesia bulbs, MAF/A. 1/1 female (NPPRL 09/2002/2330), date unknown, collector unknown, bulbs, air cargo, MAF/A. 3/3 females, 1 male (NPPRL 09/2003/3889, NPPRL 09/ 2003/4852, NPPRL 09/2004/3058), date unknown, collector unknown, tomatoes, MAF/A. LORD HOWE I: Intercepted in New Zealand: $1 / 1$ female, 4 males (P.Q.A. 1197), 25 Jun 1970, P.G. Whitham, palm seed, MAF/A. NORFOLK I: Intercepted in New Zealand: $1 / 1$ female (B92704), 15 Jul 2004, collector unknown, pine tree seeds, AQIS/QLD. $1 / 11$ females, 7 males, 3 tritonymphs [+ Proctolaelaps pygmaeus] (AK 4461), 22 Dec 1978, N. Lomax, host unknown, MAF/A. 1/1 male (NPPRL 09/2003/
4643), date unknown, collector unknown, palm seed, MAF/ A.

BRAZIL: Intercepted in New Zealand: $1 / 13$ females, 4 males (P.Q.A.K. 2708), 9 Dec 1977, K. Goodwin, orchids, MAF/A.
CHILE: Intercepted in New Zealand: $1 / 14$ females (P.Q.A. 9085), 13 Apr 1977, B.J. Winfield, Lauris nobilis leaves, MAF/A.
CHINA: Intercepted in New Zealand: $1 / 1$ female, 2 males (NPPRL 09/01/2643), 3 Aug 2001, collector unknown, garlic, MAF/A. 1/1 female (NPPRL 09/2003/6140), date unknown, collector unknown, Ya pear, MAF/A. $1 / 1$ male (NPPRL 09/2003/7111), date unknown, collector unknown, Ya pear, MAF/A. HONG KONG: Intercepted in New Zealand: $1 / 1$ male (P.Q.A. 8), 13 Jan 1965, J.H. Stackett, water chestnut (Scirpus tuberosus), MAF/A. 1/6 females, 2 males, 1 tritonymph, 5 Mar 1965, C.A. F. Jaques, chinese food (dried shell fish), MAF/A. 1/1 male (P.Q.N. 246), 22 Apr 1965, C.A.F. Jaques, dried vegetable leaf, MAF/A. 1/2 males [+ Rhizoglyphus sp. 1 protonymph, 1 larva] (P.Q.A. 226), 2 Nov 1967, N.H. Hyde, Colocasia esculenta bulbs, MAF/A. $1 / 12$ females, 6 males, 6 tritonymphs, 1 protonymph (A. 1190), 25 Jun 1970, S. Hilder, dried food, MAF/A. 1/4 females (P.Q.A. 3090), 13 Apr 1978, N. Lomax, orange, MAF/A. 1/4 females (P.Q.A. 3401), 12 Jun 1978, K. Hawkes, lychee, MAF/A. 1/3 female [+ Tyrophagus tropicus 1 female] (P.Q.A. 1740), 18 Aug 1978, V. Ovens, dried fruit, MAF/A. $1 / 1$ female, 3 males [+ Tyrophagus tropicus 2 females, 1 male, 1 tritonymph] (P.Q.A. 4872), 26 Apr 1979, R. Barnett, dried lychees, MAF/A. $1 / 2$ females, 1 male, 1 protonymph [+ Blattisocius dentriticus 2 females] (P.Q.R. 4784), 8 Dec 1980, K. Shaw, red dates, MAF/A. $1 / 1$ female, 2 males [+ Carpoglyphus lactis 3 females, 4 males] (P.Q.R. 4784), 8 Dec 1980, K. Shaw, red dates, MAF/A. TAIWAN: Intercepted in New Zealand: $1 / 5$ females, 1 male (P.Q.R. 1780), 8 Feb 1972, I.D. Kilduff, orchids, MAF/A. $1 / 3$ females, 2 males (P.Q.R. 1780), 8 Feb 1972, I.D. Kilduff, Orchidaceae, MAF/A.
COOK IS: Intercepted in New Zealand: $1 / 1$ female (P.Q.A. 177), 7 Sept 1967, J.A. Hooper, calyx end of orange, MAF/ A. $1 / 1$ female (P.Q.A. 213), 3 Aug 1977, D.W. White, banana, MAF/A. $1 / 5$ females (P.Q.A. 363), 20 Sep 1977, R. Blackwell, copra, MAF/A. 1/33 females, 18 males [+ Mesostigmata 2] (P.Q.A. 4237), 31 Oct 1978, J. Chignell, capsicums, MAF/A. 1/4 females (P.Q.A. 3826), 3 Jan 1980, A. Habraken, taro, MAF/A. $1 / 7$ females, 2 males (P.Q.A. 6425), 19 Jan 1980, P.C. Smith, banana, MAF/A.

CRETE: Intercepted in New Zealand: $1 / 1$ female (P.Q.A. 2850), 26 Jan 1978, E. Baigent, seeds \& spices, MAF/A.

ECUADOR: Intercepted in New Zealand: $1 / 1$ female, 1 male (P.Q.A. 7817), 2 Apr 1976, R. Blackwell, banana, MAF/A. $1 / 1$ male (P.Q.A. 7934), 16 Jun 1976, D.G. Voice, banana, MAF/A. $1 / 1$ female, 4 males (P.Q.A. 70), 14 Jun 1977, G.J. Higgins, banana, MAF/A. 1/1 female (R.2497), 29 Aug 1977, collector unknown, banana, MAF/A. 1/4 females (P.Q.A.), 27 Oct 1977, J.R. Tabak, banana, MAF/A. 1/1 male (P.Q.A. 2986), 12 Jun 1978, K. Kennett, banana, MAF/A. $1 / 1$ female, 1 male $[+$ Calvolia sp. 1 female] (P.Q.A. 2552), 12 Feb 1979, N. Lomax \& J. Sumner, banana, MAF/ A. $1 / 1$ female, 1 male (NPPRL 09/2001/3919), 9 Nov 2001, collector unknown, banana, MAF/A. $1 / 3$ females (NPPRL 09/2001/4650), 21 Dec 2001, collector unknown, banana, MAF/A. $1 / 2$ females, 1 male (NPPRL 09/2002/3551), 4

Aug 2002, collector unknown, banana, MAF/A. $2 / 2$ females, 1 male, 1 tritonymph (NPPRL 09/2002/5193), 23 Sep 2002, collector unknown, banana, MAF/A. $1 / 1$ female (NPPRL 09/2002/378), date unknown, collector unknown, banana, MAF/A. 1/1 male (NPPRL 09/2002/3381), date unknown, collector unknown, banana, MAF/A. $2 / 1$ female, 3 males, 1 tritonymph (NPPRL 09/2002/4944, NPPRL 09/2002/4946), date unknown, collector unknown, banana, MAF/A. $2 / 3$ females, 3 males (NPPRL 09/2002/5436), date unknown, collector unknown, banana, MAF/A. $1 / 1$ male, 1 tritonymph (NPPRL 09/2002/1250), date unknown, collector unknown, banana Aw 9125, MAF/A. $1 / 2$ males (NPPRL 09/2004/2471), date unknown, collector unknown, banana, MAF/A.
FIJI: Intercepted in New Zealand: $1 / 3$ females, 4 males, 1 tritonymph (A. 8409), 30 Jan 1976, J.P. Chignell, garlic, MAF/A. $1 / 2$ females, 1 male, 1 tritonymph (P.Q.R. 2213), 22 Mar 1976, C.H. Cook, egg plant, MAF/A. 1/4 females, 1 male (P.Q.A. 2441), 24 Sep 1977, S. Bowman, Theobromia cacao, MAF/A. 1/1 female (P.Q.A. 3194), 28 Jun 1979, R. Steele, lemon, MAF/A. $1 / 2$ females (NPPRL 09/2002/2980), 21 Jun 2002, collector unknown, yams, MAF/A. 1/3 females [+ Ascidae 3 females] (NPPRL 09/2003/2029), 22 Apr 2003, collector unknown, curry leaves, MAF/A. 1/1 female, 2 males (NPPRL 09/2003/4372), date unknown, collector unknown, coconuts, MAF/A. 1/1 female [+ Rhizoglyphus minutus] (NPPRL 09/2003/6548), date unknown, collector unknown, taro, MAF/A.
GREECE: Intercepted in New Zealand: $1 / 1$ male (P.Q.M. 236), 2 Apr 1965, C.A.F. Jaques, dahlia bulbs, tubers, MAF/ A. $1 / 1$ female (P.Q.A. 443), 6 Dec 1965, A.C. Hall, unknown plant roots, MAF/A.
GERMANY: Intercepted in New Zealand: $1 / 1$ female [+ Tyrophagus neiswanderi 1 male] (P.Q.A. 3465), 28 Apr 1974, P.D. Brown, corn, MAF/A. Intercepted in Queensland, Australia: 1/1 female (Q100644, 10808QA), 6 Dec 2002, collector unknown, Cycad palm seed, AQIS/QLD. INDIA: Aurangabad: Marathwada University, $2 / 6$ females, 3 tritonymphs, 28 Nov 1980, Hijay Bahekar, host unknown, MAF/A. Intercepted in New Zealand: $1 / 1$ female, 1 male (P.Q.A. 2461), 1 Oct 1977, L. Blandchard, orchids, MAF/ A. $1 / 1$ female (P.Q.A. 8786), 1 Nov 1976, N. Lomax, orchids, MAF/A. $1 / 3$ females, 1 male (P.Q.A. 2777), 5 Jan 1978, K. Shaw, orchids, MAF/A. 1/1 female (NPPRL 09/ 2002/3794), 26 Aug 2002, collector unknown, roses, MAF/ A.

INDONESIA: Intercepted in Queensland, Australia: 1/1 female, 2 tritonymph (Q18708), 15 Jun 2000, collector unknown, Vanilla beans, AQIS/QLD.
ITALY: Intercepted at Gisborne in New Zealand: $1 / 3$ females, 1 male [+ Mesostigmata 1 female], 2 Apr 1980, collector unknown, seed of Acer pseudoplatanus, MAF/A. JAMAICA: Intercepted in New Zealand: 2/106 females, 91 males, 2 tritonymphs, 10 Jan 1957, collector unknown, oranges, MAF/A.
JAPAN: Intercepted in New Zealand: $1 / 5$ females (NPPRL 09/2001/3310), 3 Oct 2001, collector unknown, tulip bulbs, MAF/A.
MADAGASCAR: Intercepted in Queensland, Australia: 1/1 female, 1 protonymph [+ Sancassania sp. 1 male] (BIN76287), 6 Feb 2004, collector unknown, palm and cycad seed, AQIS/QLD. Intercepted in New Zealand: 1/2 females [+ Rhizoglyphus sp. 1 heteromorphic male] (NPPRL

09/2004/1698), date unknown, collector unknown, palm leaves, MAF/A.
MALTA: Intercepted in New Zealand: $1 / 2$ females (P.Q.N. 6), 23 Feb 1979, P.G. Whitham, caper seed, MAF/ A.

NETHERLANDS: Intercepted in New Zealand: 4/6 females, 1 male, 1 tritonymph (P.Q.J. 56), 5 Dec 1961, collector unknown, onions, MAF/A. 1/1 male [+ Glycyphagus sp.] (P.Q.A. 280), 2 Jul 1965, C.A.F. Jaques, Gladioli corms, MAF/A. $1 / 3$ females, 7 males, 8 tritonymphs, 1 protonymph (P.Q.A. 185), 12 Jun 1969, P.G. Whitham, Gouda cheese, MAF/A. $1 / 3$ females, 2 males (P.Q.NA. 9), 9 Feb 1978, R.F. Lowe, Freesia sp. bulb, MAF/A. $5 / 11$ females, 6 males (P.Q.A. 2191), 30 Nov 1978, J. Hammond, cheese, MAF/A. 1/4 females, 1 male, 1 tritonymph (NPPRL 09/2002/1041), 6 Mar 2002, collector unknown, Iris bulbs, MAF/A. 1/5 females, 1 tritonymph (NPPRL 09/2002/4827), 1 Nov 2002, collector unknown, Iris bulbs, MAF/A. 1/1 male (NPPRL 09/2002/4653), date unknown, collector unknown, Muscari bulbs, MAF/A. $1 / 5$ females (NPPRL 09/2002/4654), date unknown, collector unknown, Narcissus bulbs, MAF/A. 1/2 females, 1 male, 1 tritonymph (NPPRL 09/2002/4827), date unknown, collector unknown, Iris bulbs, MAF/A. 1/2 females, 1 male, 1 tritonymph (NPPRL 09/2002/5390), date unknown, collector unknown, Iris bulbs, MAF/A. 1/4 females (NPPRL 09/2003/441), date unknown, collector unknown, Iris bulbs, MAF/A. $1 / 1$ female, 1 tritonymph (NPPRL 09/2003/5757), date unknown, collector unknown, Iris bulbs, MAF/A.
PAPUA NEW GUINEA: Buna, $1 / 3$ females (J10733), 27 Jul 1943, F.J. A, SAM. Bulolo, $1 / 1$ male (J10753), Aug 1954, H. Womersley, passalid, SAM. Lae, 1/3 females (J10790, J10791), May 1954, H. Womersley, millipede Polyconoceris alaskis, SAM. Intercepted in Queensland, Australia: 1/1 male (Q27049), 21 Jun 2002, collector unknown, vanilla pods, AQIS/QLD.
PHILIPPINES: Intercepted in Queensland, Australia: 1/1 female, date unknown, collector unknown, rice plant, AQIS/QLD. Intercepted in New Zealand: $1 / 1$ female (NPPRL 09/2003/305), date unknown, collector unknown, banana, MAF/A.
SAMOA: Intercepted in New Zealand: $1 / 1$ female, 1 male, 2 tritonymphs [+ Tyrophagus tropicus 1 male, 2 tritonymphs] (P.Q.A. 3577), 6 Jun 1973, P.G. Whitham, banana, MAF/A. 1/3 females (P.Q.A. 7949), 25 Jun 1976, D.A. Dean, banana, MAF/A. 1/4 females (P.Q.A. 7948), 26 Jun 1976, J. Henderson, banana, MAF/A.
SINGAPORE: Intercepted in New Zealand: $1 / 2$ females, 2 males (NPPRL 09/2003/572), date unknown, collector unknown, container, MAF/A. $1 / 2$ females, 5 males [+ Rhizoglyphus sp. 1 female] (P.Q.A. 999), 21 Apr 1970, M.L. Robertson, garlic, MAF/A. 3/8 females, 4 males [+ Sancassania krameri 3 females] (P.Q.A. 6169), 3 Jul 1974, G.S. Benson, peanuts, MAF/A.

SOLOMON IS: Intercepted in Queensland, Australia: 1/1 female (Q25030), 9 Jan 2002, collector unknown, coconuts, AQIS/QLD.
SPAIN: Intercepted in New Zealand: $1 / 6$ females, 2 males, 1 tritonymph, 1 protonymph (P.Q.A. 245), 10 Aug 1963, L. Barloer, Almonds, MAF/A.

THAILAND: Intercepted in New Zealand: $1 / 6$ females, 4 males, 1 tritonymph [+ oribatida 1 female] (A 2754), 24 Dec 1977, S. Bowman, orchid plants, MAF/A.

TOKELAU IS.: $1 / 1$ female, 1 male, 1 tritonymph (P.Q.E. 146), 14 Apr 1980, R. German, coconuts, MAF/A.

TONGA: Intercepted in New Zealand: $1 / 1$ female, 1 male, 1 tritonymph [+ Rhizoglyphus sp. 1 female +1 oribatid] (P.Q.A. 400), 10 Aug 1966, N. Emery, tomatoes, MAF/A. 1/3 females (P.Q.A. 7362), 16 Feb 1976, J.L. Burton, banana, MAF/A. $1 / 4$ females (P.Q.A. 6370), 25 Sept 1974, C.H. Brett, coconuts, MAF/A. 1/6 females [+ Sancassania sp. 1 male] (P.Q.A. 2461), 29 Oct 1974, F. Mead, citrus, MAF/A. $1 / 1$ female (P.Q.A. 6483), 3 Dec 1974, J.J. Bongiovanni, taro, MAF/A. $1 / 1$ male (P.Q.A. 7357), 12 Feb 1976, D. Longhurst, coconuts, MAF/A. 1/4 females, 1 male (P.Q.A. 7361), 16 Feb 1976, J.L. Burton, banana, MAF/A. 1/4 females (P.Q.A. 7373), 18 Feb 1976, D. Longhurst, taro, MAF/A. $1 / 1$ female (P.Q.A. 7405), 8 Mar 1976, M.J. Leonard, banana, MAF/A. $1 / 2$ females, 1 tritonymph (P.Q.A. 7412), 9 Mar 1976, V. Rands, banana, MAF/A. 1/2 females, 2 males (P.Q.A. 106), 2 Aug 1977, R. Mulholland, banana, MAF/A. $1 / 1$ female (P.Q.A. 550), 19 Oct 1977, R. Steele, coconuts, MAF/A. 1/1 female (P.Q. A 167), 22 Jul 1977, C.M. Rogers, banana, MAF/A. $1 / 2$ females, 2 males (P.Q.A. 574), 26 Oct 1977, S.J. Andrews, tomato, MAF/A. $1 / 1$ female (P.Q.A. 3971), 7 Sept 78, N. Lomax, host unknown, MAF/A. 1/1 female [+ Winterschmidtiidae 1 male] (P.Q.A. 863), 9 Jan 1978, B. Barrett, banana, MAF/A. $1 / 1$ female + [Tyrophagus pacificus 2 females] (P.Q.A. 963), 7 Feb 1978, M.J. Leonard, banana, MAF/A. 1/3 females (P.Q.A. 1653), 31 Jul 1978, R. Bayliss, taro, MAF/A.
TURKEY: Intercepted in New Zealand: $1 / 3$ females, 1 male (P.Q.S. 3), 1 Apr 1960, collector unknown, developing on mould in hazel nuts, MAF/A. $1 / 3$ females, 6 males, 3 tritonymphs (P.Q.S. 3), 1 Apr 1960, collector unknown, developing on mould in hazel nuts, MAF/A. 1/1 female, 2 males, 1 tritonymph, 13 May 1970, collector unknown, figs, MAF/A. $1 / 5$ females (P.Q.A. 6588), 27 Feb 1975, M. Brett, dried Fig, MAF/A. 1/1 female (P.Q.M. 156), 5 May 1978, P. O'Donoghue, dried Fig, MAF/A.
U.K.: Reading, Berks, $1 / 12$ females, 6 males (P.L.R. Col. 186 (1)), 7 Mar 1951, collector unknown, cheshire cheese, ANIC. Intercepted in New Zealand: $1 / 3$ females [+ Tyrophagus longior 1 male] (P.Q.A. 353), 11 Jul 1966, R.J. Bishop, gladioli bulbs, MAF/A.
U.S.A.: Intercepted in New Zealand: $1 / 2$ females (P.Q.A. 525), 30 Aug 1966, N.H. Hyde, Caladium bulbs, MAF/A. 1/ 4 females, 2 males (P.Q.A. 2), 27 Jul 1967, N.H. Hyde, Caladium bulbs, MAF/A. 1/4 females (P.Q.A. 4), 27 Jul 1967, W.A. Apt, Caladium, MAF/A. $1 / 2$ females, 1 male (P.Q.A. 960), 26 Mar 1970, P.G. Whitham, potato, MAF/ A. $1 / 5$ females (P.Q.A. 8634), 1 Apr 1977, S.J. Andrews, pimentoes, MAF/A. 1/1 male (P.Q.A. 2593), 6 Nov 1977, P. Doherty, Plumeria sp., MAF/A. 1/4 females (P.Q.A. 705), 25 Nov 1977, L. Blanchard, peanuts, MAF/A. $1 / 11$ females, 2 males (A 1447), 8 Jun 1978, M.J. Leonard, dried food stuffs, MAF/A. $1 / 2$ females, 2 males, 1 tritonymph (P.Q.A. 113), 27 Oct 1981, R.H. Steele, palm seeds, MAF/ A. $1 / 1$ female (NPPRL 09/2002/585), 4 Feb 2002, collector unknown, oranges, MAF/A. $1 / 2$ females, 1 male [+ Acarus sp. 1 female] (NPPRL 09/2002/2352), 16 Apr 2002, collector unknown, gladiolus, MAF/A. 1/14 females, 2 males, 5 tritonymphs, 1 protonymph (NPPRL 09/2002/4827), date unknown, collector unknown, Iris bulbs, MAF/A. 1/6 females, 5 males, 6 tritonymphs, 2 protonymphs (NPPRL 09/2003/3514), date unknown, collector unknown, dormant
bulb, MAF/A. Intercepted in Queensland, Australia: 2/ 2 females (Q25069), 8 Jan 2002, collector unknown, palm seed, AQIS/QLD. Intercepted in New South Wales, Australia: $1 / 1$ female [+ Tyrophagus neiswanderi 1 male] (\#N19 946), date unknown, collector unknown, orange, AQIS/NSW. $1 / 1$ male (N42256, \#79808), 6 Dec 2001, collector unknown, lemons, AQIS/NSW.
VANUATU: Intercepted in Queensland, Australia: 1/ 1 female (Q25338), 22 Jan 2002, collector unknown, coconuts, AQIS/QLD.
WEST AFRICA: Intercepted in New Zealand: 4/4 females, 3 males (P.Q.M. 1270), 11 May 1973, G. Aiken, Theobroma cacao, MAF/A.
Note: intercepted banana from Ecuador, Philippines and Tonga is assumed to be fruit of Musa sapientum.

Tyrophagus curvipenis Fain \& Fauvel

Type material. Holotype male: PORTUGAL, $1 / 1 \mathrm{male}+$ 1 (paratype) female, Dec 1991, M.T. Malé, orchids cultivated in a greenhouse, IRScNB. Paratypes: $1 / 1$ female + holotype male, as holotype; $1 / 1$ male, 3 tritonymphs, Dec 1991, G. Fauvel, IRScNB.
Other material. NEW ZEALAND: AK: Auckland, $1 / 2$ females, 3 males [+ Tyrophagus communis 2 females, 1 male] (P.Q.A. 3325), 9 Oct 1972, T. Geldard, garlic, MAF/ A. Auckland, Mt Albert Research Centre, $9 / 1$ female, 2 males, 7 tritonymphs (N.42, 246555), May 1974, B.M. May, mummified loquat fruit, NZAC. Tiritiri Matangi Is., Hauraki Gulf, $5 / 5$ females, May 1976, H. Moller, Rattus exulans, NZAC. Auckland, Titirangi, $2 / 6$ females, 1 male, 10 Nov 1976, D. Steven, feeding on the pollinia of Cymbidium sp., MAF/A. Auckland, Orakei Basin, $1 / 4$ females, 2 males, 13 Sept 1977, J. Craig \& M. Halstead, swallow nest $77 / 105$, NZAC. Auckland, $1 / 4$ females, 1 male, 1 tritonymph, 26 Apr 1988, A. Cibilich, calyx of Granny Smith apple (in sooty mould) in store, MAF/A. Auckland, Glen Eden, $1 / 1$ female, 1 male [+ Tyrophagus sp. 1 female], 8 Apr 1979, M. Lessiter, avondale spider egg cluster, NZAC. Auckland, Puketutu I, Manukau Harbour, 1/1 male [+ Tyrophagus communis 1 female], Oct 1980, J. Clearwater, citrus borer, dead larva in wood, NZAC. Auckland, Kumeu, 2/2 females, 6 Jun 1984, T. Batchelor, Persimmon FUYU, mis. MB Fumigation, NZAC. Auckland, Mt Albert, $1 / 1$ female, 6 Jun 1984, T. Batchelor, Persimmon fumigation MB, NZAC. Auckland, DSIR, Kumeu Research Orchard, 1/5 females, 1 male, 1 tritonymph, Apr-Jun 1988, V. Holt, Grapefruit, unsprayed fruit/leaf, NZAC. Auckland, Pt Chevalier, 3/13 females, 4 males, 1 tritonymph, 6 Sep 1988, D. Gardiner, Miomantis caffra ootheca-living but damaged, feeding on dead eggs \& embryos, NZAC. Auckland, Taupaki, 3/ 8 females, 4 males (1), Jul 1991, C. Stemens, senile nest of Vespula germanica, NZAC. Auckland, 1/4 females, 2 males, 29 Apr 1993, J. Clearwater, feeding on dead Stathmopoda larva, NZAC. Auckland, MARC, Mt Albert, 7/6 females, 1 male (1), 15 Aug 1997, M. Sandanayaka, barley originated from Lincoln in late July 1997, NZAC. Auckland, Kingsland, $1 / 4$ females (Surveillance 3/01/661), 14 Mar 2001, M. O'Donnell, hydrangea leaf, MAF/L. Auckland, $3 / 2$ females, 1 male, 1 Oct 2001, J. Todd, roots of clover, NZAC. Auckland, $1 / 1$ female, 1 tritonymph (Surveillance 3/2001/2310), 1 Nov 2001, M. O'Donnell, associated with coccid scale on Buxus sp., MAF/L. Auckland, Tamaki, $1 / 1$ female, 5 males, 20 Nov 2004, Q.-H. Fan, honeybee hive, NZAC. NEW

ZEALAND: BP: Te Puke, Bay of Plenty, $1 / 4$ females, Dec 1974, D. Horning, sphecids stick-trap, NZAC. CO: Cromwell (Co), $1 / 1$ female, 1 tritonymph (Stonefruit Survey 97/1358), 28 Aug 1997, M. O’Donnell, bark of apricot, MAF/L. Central Otago, $2 / 5$ females, 2 males, 1 tritonymph, 2 larvae (Stonefruit Survey 97/1457), 10 Sep 1997, M. O’Donnell, mummified apricot fruit, MAF/L. Central Otago, 1/1 tritonymph (Stonefruit Survey 97/2001, Co 60), 27 Nov 1997, M. O'Donnell, bark of cherry, MAF/L. Central Otago, 1/1 female (Stonefruit Survey 97/2109), 11 Dec 1997, M. O'Donnell, foliage of cherry, MAF/L. Roxburgh (Co), 1/1 tritonymph (Stonefruit Survey 97/1687), 1997/98, D. Bejakovich, bark of nectarine, MAF/L. Roxburgh (Co), 1/1 female (Stonefruit Survey 3/97/1687), 1997/98, D. Bejakovich, bark of nectarine, MAF/L. HB: Hastings: Haumoana, $1 / 1$ female [+ Tyrophagus longior 3 females] (H 874), 21 Jul 1970, C.L.J. Ryan, cucumber leaves (variety Princess), MAF/A. Havelock North Ecology Div., $2 / 2$ female [+ Tyrophagus longior 1 female + T. similis 3 females, 1 tritonymph], 14 Nov 1977, collector unknown, nest of Sturnus vulgaris, box 8, nest 77/158, NZAC. Havelock North Ecology Div., $1 / 1$ female, 1 male [+ oribatid 1 nymph], 4 Jan 1978, collector unknown, nest at power pole 5, nest 78/3, NZAC. Havelock North Ecology Div., 1/3 females [+ Tyrophagus similis 4 females, 1 tritonymph], 4 Jan 1978, collector unknown, nest at power pole 19, nest 78/4, NZAC. KE: Kermadec Is, Raoul I, 1/1 female, 13 Aug 1973, J. Ireland, dead Rattus norvegicus at hostel, NZAC. MC: Christchurch, $1 / 1$ female [+ Mesostigmata 1] (Bee Surveillance 3/99/1212), 1999, M. O'Donnell, washed off bee, MAF/L. ND: Kerikeri, $1 / 8$ females, 2 males, 1 larva, Jul 1991, J.G. Charles, feeding on eggs of Ceroplastes communis, NZAC. NN: Nelson, $1 / 1$ male, 12 Nov 1969, H. Kissling, sparrow nest material, NZAC. Nelson, Quarantine Room, 1/2 females, 14 Apr 1969, collector unknown, Coleophora tubes, NZAC. Nelson, $1 / 1$ male (Subtropical Survey 3/99/ 105), 22 Jan 1999, M. O’Donnell, kiwi fruit, MAF/L. SC: South Canterbury G Sugrue, $1 / 1$ male (Bee Surveillance 3/ 99/1257), 5 Apr 1999, M. O’Donnell, honeybee hive, MAF/ L. WI: Palmerston North, $1 / 2$ females, 3 males, 4 tritonymphs (38), 31 Jul 1974, A. Spiers, associated with galls ex Populus nigra var. italica, MAF/A. Manawatu, 3/5 females, 6 males [+ Tyrophagus longior 2 males], 28 Apr 1975, D.C.M. Manson, pallet and long scrapings, dried milk powder, MAF/A. WN: Levin, Ohau, Muhunoa East Rd., 1/3 females, 1 male, 8 Jun 1976, J.C. Wyllie, black currant stem, MAF/A. WO: Waitomo, Ruakuri Cave, $5 / 4$ females, 1 male, 18 Nov 1998, I.R. Millar, netted in small stream, NZAC. Marangi, $1 / 2$ females, 1 male (Surveillance 3/01/ 883), 5 Apr 2001, M. O’Donnell, leaves of Nashi, MAF/L. Specific locality unknown: $1 / 3$ females, 3 tritonymphs (Surveillance 3/2001/1764), date unknown, M. O'Donnell, black currents, MAF/L. 1/4 females (P.Q.A. 8317), 3 Dec 1976, J. Bongiovanni, grapefruit, MAF/A. 1/1 female (P.Q.A. 9064), 4 Apr 1977, J. Chignell, passionfruit, MAF/A. 1/1 female, 1 protonymph (P.Q.A. 2511), 13 Oct 1977, J.R. Tabak, grapefruit, MAF/A. 1/1 female [+ Tyrophagus longior 3 females, 1 male] (A 5623), 29 Nov 1982, M. Lennard, export strawberries, MAF/A. Intercepted in New South Wales, Australia: 1/1 female, 1 tritonymph [+ Tyrophagus communis 1 female, 1 male, 1 tritonymph] (N35085), 25 Jul 2000, collector unknown, onions, AQIS/NSW. 1/1 female (N41717, \#78752), 31 Oct 2001, collector unknown, lemons, AQIS/NSW. 1/1 female (N41718, \#78757), 8 Nov

2001, collector unknown, lemons, AQIS/NSW. 1/1 tritonymph (N41925, \#79161), 15 Nov 2001, collector unknown, lemons, AQIS/NSW. 1/1 protonymph (N44478, \#84065), 2 May 2002, collector unknown, kiwifruit, AQIS/ NSW. 1/1 protonymph (N44518, \#84147), 13 May 2002, collector unknown, shallots, AQIS/NSW. $1 / 2$ females, 1 tritonymph (N44558, \#84227), 15 May 2002, collector unknown, kiwifruit, AQIS/NSW. 1/1 male (N44821, \#84716), 29 May 2002, collector unknown, kiwifruit, AQIS/ NSW. 1/1 protonymph (N45682, \#86215), 3 Jul 2002, collector unknown, shallots, AQIS/NSW. 1/1 female (N107274, 021582NA), 12 Jul 2004, collector unknown, onions, AQIS/ NSW. 1/1 female [+ Tyrophagus longior 1 female + Acaridae 1 tritonymph] (N102757, \#13320NA), 20 Aug 2003, collector unknown, onions, AQIS/NSW. Intercepted in Queensland, Australia: $1 / 1$ female (Q103598, 15364QA), 25 Feb 2004, collector unknown, capsicums, AQIS/QLD. 2/1 female, 1 male (Q105028, 3*40430058), 13 Feb 2004, collector unknown, capsicums, AQIS/QLD. AUSTRALIA: NSW: Sydney, 1/1 female (J10785), 1941, Raym., nests of Exuneura concinnula, SAM. Intercepted in New Zealand: $1 / 1$ male (P.Q.A. 365), 21 Sep 1977, J. Chignell, tree onion bulbs, MAF/A. $1 / 2$ females (P.Q.R. 9010), 2 Jul 1978, J. Westall, bird-of-paradise flower, MAF/ A. $1 / 1$ female (NPPRL 09/2002/3902), 3 Sep 2002, collector unknown, mandarin, MAF/A. 1/10 females, Nov 1981, collector unknown, Disonycha \& Agasicles beetles, NZAC. FRANCE: Intercepted in New Zealand: $1 / 1$ female (P.Q.M. 405), 1 Dec 1978, M.M. Gay, apples, MAF/A.

Tyrophagus longior (Gervais)

Type material. Neotype male (designated by Robertson 1959): NETHERLANDS: Gouda, $1 / 2$ males (No. 237 (3, 4)), 26 Mar 1954, P.L. Robertson, cheese, BMNH.

Other material. NEW ZEALAND: AK: Auckland: Kumeu, 1/1 female, 1 male (A 6033), 28 Oct 1979, R. Steele \& J.A. Anderson, strawberries for export, MAF/A. Auckland, 1/1 male (A 6073), 5 Nov 1979, J. Holton, export strawberries, MAF/A. Auckland, $1 / 1$ male, 8 tritonymphs [+ Tyrophagus communis 1 female, 1 male, 1 tritonymph] (A6181), 26 Nov 1979, G. Gibson, strawberry, MAF/A. Papakura, 1/7 females, 1 male (P.Q.A. 8217), 11 Nov 1980, G. Gibson, strawberries, MAF/A. Auckland: Kumeu, $1 / 2$ females, 3 males (A 5107), 23 Nov 1981, J.F. Allan, export strawberries, MAF/A. Henderson, $1 / 1$ female, 3 males [+ Tyrophagus communis 1 male] (A 213), 24 Nov 1981, collector unknown, strawberries for export, MAF/A. Howick: Botany Rd., $1 / 1$ female [+ Tyrophagus communis 1 female, 1 male], 8 Nov 1985, D.C.M. Manson, strawberry fruit, MAF/A. CO: Alexandra: property of Mr C. Rowley, $2 / 13$ females, 7 males, 14 May 1964, W.S. Kemp, ryegrass seed, MAF/A. Clyde, Earnscleugh Res. Orch., 2/9 females, 4 males, 1 tritonymph (1, 2), 26 Apr 1991, G.F. McLaren, mallow leaves, NZAC. Central Otago, $1 / 1$ female (NPPRL Ref. 97/ 1516), 18 Sep 1997, M. O’Donnell, nectarine bark, MAF/ L. HB: Havelock North Ecology Div., Box 3, 1/4 females, 14 Nov 1977, collector unknown, nest of Sturnus vulgaris, nest 77/162, NZAC. Havelock North Ecology Div., Power pole by Don's office, $2 / 4$ females, 4 males, 14 Nov 1977, collector unknown, nest 77/156, NZAC. Havelock North Ecology Div., $2 / 2$ females, 2 males, 3 tritonymphs, 14 Nov 1977, collector unknown, nest 9 78/2, NZAC. Havelock

North Ecology Div., 1/1 female, 1 male [+ Tyrophagus similis 1 female], 14 Nov 1977, collector unknown, box at end of storeroom, nest 77/159, NZAC. Havelock North Ecology Div., 3/3 females, 1 male [+ Tyrophagus similis 5 females, 1 male + Tyrophagus curvipenis 1 female + Lepidoglyphus destructor 2 females], 14 Nov 1977, collector unknown, nest of Sturnus vulgaris, box 4, nest 77/160, NZAC. Hastings: Haumoana, 8/9 females, 4 males [+ Tyrophagus curvipenis 1 female] (H 874), 21 Jul 1970, C.L.J. Ryan, cucumber leaves (variety Princess), MAF/A. MB: Rai Valley, 4/22 females, 14 males (1, 2, 3, 4), 19 Jul 1945, P.L. Robertson, export cheese shelves, NZAC. MC: Christchurch, 1/49 females [+ Carpoglyphus lactis], Sep 1962, R. Wilson, bee frames, NZAC. Leeston: N.Z. Farmers Co-op Store, $1 / 1$ male, 1 tritonymph, 5 Jul 1974, C. Dorrett \& K.G. Somerfield, damaged peas, MAF/A. Christchurch: Horotane Valley, $2 / 6$ females, 2 Jun 1977, G. Mavromatis, cucumber leaves, MAF/A. Christchurch: Horotane Valley, 1/3 females [+ Mesostigmata 1 female], 17 Jun 1977, G. Mavromatis, property of R. Mundy, MAF/ A. Leeston, $1 / 11$ females, 4 males (350/A), 6 Nov 1979, K.G. Somerfield, barley, MAF/A. Christchurch, $2 / 5$ females, 2 males, 24 Jun 1987, R.P. Macfarlane, Bombus nests, NZAC. Ashburton, $1 / 2$ males (8.9×108.9), date unknown, collector unknown, grass seed, MAF/A. Woodlands, $1 / 4$ females, 2 males, 1 tritonymph [+ Lepidoglyphus destructor 1 female], 3 Aug 1967, I. Johnston, bulked wheat, NZAC. ND: Whangarei, $1 / 1$ females, 2 males [+ Mesostigmata 5], 19 Nov 1944, B.B. Q, wedding cake, NZAC. NN: Nelson, 1/ 14 females, 4 males (113, sample 1), 10 May 1945, P.L. Robertson, tomato chutney, NZAC. Nelson, Cawthron Institute, 1/7 females, 5 males, 19 Jan 1949, P.L. Robertson, cheese, NZAC. Nelson, 2/9 females, 7 males, 16 Nov 1949, P.L. Robertson, cell 1 parents, NZAC. Nelson, $1 / 2$ females, 2 males, 10 Jan 1950, P.L. Robertson, cell 7 1st generation, NZAC. Nelson, $1 / 5$ females, 1 tritonymph, 12 Jan 1950, P.L. Robertson, cell 3 1st generation, NZAC. SC: South Canterbury, $1 / 2$ females, 1 male, 1 abnormal male (S. 245), 19 May 1976, J.A. Smith, barley, MAF/A. SL: Clinton, 1/3 females, 1 male [+ Lepidoglyphus destructor 5 females], 2 Aug 1967, R. Whiteside, bulked wheat, NZAC. Owaka: Balclutha, $7 / 7$ females, 18 males, 10 tritonymphs, 2 protonymphs, 19 Mar 1970, G.A.H. Helson, ryegrass seed, MAF/A. TK: New Plymouth, 1/66 females and males [+ Acarus farinae + Glycyphagus domesticus + Lepidoglyphus cadaverum $]$ (8, samples 1-5), 16 Dec 1942, P.L. Robertson, cheese in cool storage, NZAC. New Plymouth, $1 / 58$ females and males [+ Acarus farinae + Glycyphagus domesticus] (9, samples 1-5), 16 Dec 1942, P.L. Robertson, cheese in cool storage, NZAC. New Plymouth, $1 / 18$ females, 6 males, 2 tritonymphs, 3 larvae [+ Acarus farinae 3 females, 1 male] (5 , samples 5, 6), 16 Dec 1942, P.L. Robertson, cheese in cool storage, NZAC. New Plymouth, 1/61 females and males [+ Acarus farinae + Glycyphagus domesticus $]$ (10 , samples (6-10) 1-5), 16 Dec 1942, P.L. Robertson, cheese in cool storage, NZAC. Eltham: Co-op, Rennet Co. Ltd, $3 / 6$ females, 7 males, 1 tritonymph, 1 protonymph [+ Tyrophagus savasi 2 females, 1 male $+T$. vanheurni 1 female, 2 males], 27 Oct 1972, G.A.H. Helson, cheese, MAF/A. WI: Massey College cool store, $2 / 4$ female [+ Acarus farinae 3 females + Glycyphagus domesticus 5 females] (100, sample 2, 3), Sep 1942, P.L. Robertson, cheese, NZAC. Manawatu dairy factory, $2 / 1$ female, 2 males
[+ Tyrophagus longior 4 females, 5 males], 28 Apr 1975, D.C.M. Manson, pallet and bag scrapings (dried milk powder), MAF/A. WN: Levin: Kimberley Rd., $1 / 1$ female, 1 male, 2 Mar 1972, S.K. Wong, bird's nest in poplar tree, MAF/A. WO: Waitomo, Ruakuri Cave, $2 / 1$ female, 1 male, 18 Nov 1998, I.R. Millar, netted in small stream, NZAC. South Island: $1 / 6$ females, 1 male, 3 Aug 1932, J. Muggeridge, grass seed, BMNH. Specific locality unknown: $1 / 5$ females, 1 male, 17 Mar 1944, P.L. Robertson, dead Prionoplus reticularis larv., NZAC. 3/4 females (1, 2, 3), 3 Aug 1932, J. Muggeridge, grass seed in store, NZAC. ship's stores "Straat Colombo", $1 / 3$ females, 1 tritonymph [+ Acarus sp. 1 female] (A 6930), 15 Sep 1975, L.M. Webber, onions, MAF/A. $1 / 3$ females, 1 male, 2 tritonymphs (P.Q.A. 2597), 9 Nov 1977, G.J. Higgins, strawberries, MAF/A. 1/2 females, 3 males, 4 tritonymphs (P.Q.A. 2601), 29 Nov 1977, T. Cullen, strawberries, MAF/A. 1/1 male [+ Tyrophagus communis 3 females] (A6117), 15 Nov 1979, G.J. Higgins, strawberries, MAF/A. 1/4 females (AK 6299), 16 Dec 1979, D. Smith, strawberry, MAF/A. 1/4 females (A 5601), 8 Nov 1982, M. Lennard, export strawberry, MAF/ A. $1 / 3$ females, 1 male [+ Tyrophagus curvipenis 1 female] (A 5623), 29 Nov 1982, M. Lennard, export strawberries, MAF/A. 1/1 male (NPPRL Ref. 3/03/2367), 2003, M. O'Donnell, bee surveillance, MAF/L. Intercepted in New South Wales, Australia: $1 / 1$ female (N26448), 8 Oct 1998, collector unknown, tamarillos, AQIS/NSW. 1/1 male (N27520, col. 54798), 25 Jan 1999, collector unknown, avocadoes, AQIS/NSW. 1/1 female [+ Tyrophagus curvipenis 1 female + Acaridae 1 tritonymph] (N102757, \#13320NA), 20 Aug 2003, collector unknown, onions, AQIS/NSW.
AUSTRALIA: WA: Western Australia, Perth, $31 / 27$ females, 2 males, 2 tritonymphs, Jan 1993, D. Roberts, prosciutto in meat works, ANIC. Intercepted in New Zealand: 1/1 female (NPPRL Ref. 09/2003/4175), 2003, collector unknown, mandarin, MAF/A.
ECUADOR: Intercepted in New Zealand: $1 / 4$ females, 1 male (A 768), 7 Dec 1977, A. Carrick, Musa sapientum, MAF/A.
NETHERLANDS: Gouda, 1/2 females (P.L.R. Col. 237 (30, 31)), 26 Mar 1954, P.L. Robertson, cheese, ANIC. Gouda, 1/2 males (P.L.R. Col. 237 (5, 6)), 26 Mar 1954, P.L. Robertson, cheese, ANIC. Intercepted in New Zealand: 1/1 male (PQR 301), 17 May 1965, H. Wiggins, Onion and shallots, MAF/A. $1 / 2$ females, 1 male (P.Q.A. 1692), 9 Aug 1978, D. Farr, Dahlia tubers, MAF/A. 1/2 females, 2 males [+ Tyrophagus similis 1 male] (21132), 8 Jul 1986, J. Nightingala, Dahlia, MAF/A.
PHILIPPINES: Intercepted in New Zealand: $1 / 1$ female, 1 male [+1 Calvolia sp. female] (P.Q.R. 2575), 7 Nov 1977, D.H. Roberts, banana, MAF/A.
U.K.: Nottinghamshire: Toton, $1 / 14$ females, 3 males, 3 tritonymphs, Jul 1955, collector unknown, cucumber leaves, BMNH. Intercepted in New Zealand: 3/1 female, 2 males [+ Tyrophagus communis 3 females] (P.Q.A. 353), 11 Jul 1966, R.J. Bishop, gladioli bulbs, MAF/A. 1/1 female (P.Q.R. 2344), 13 Dec 1976, T. Clark, combine harvester, MAF/A. $1 / 3$ females, 4 males, 6 tritonymphs (P.Q.R. 2547), 14 Oct 1977, L.M. Neal, harvester, MAF/A. 1/4 females [+ Tyrophagus similis 1 male] (P.Q.A. 2891), 8 Feb 1978, N. Lomax, Dahlia bulb, MAF/A. $1 / 3$ females, 3 males [+ Tyrophagus similis 1 female] (P.Q.A. 6349), 27 Dec 1979, A. Habrake, acorns Quercus sp. in Kew gardens, MAF/A. 1/

2 females, 4 males (P.Q.A. 6349), 27 Dec 1979, A. Habrake, acorns Quercus sp. in Kew gardens, MAF/A.
U.S.A.: Intercepted in New Zealand: $1 / 4$ females (No. 263), 16 Jul 1982, J.J. Fahey, fig leaves in P.E.Q., MAF/A. 1/1 female (NPPRL Ref. 09/2004/766), 2004, collector unknown, pomelo, MAF/A.

Tyrophagus macfarlanei sp. n.

Type material. Holotype female: NEW ZEALAND: Intercepted in Queensland, Australia: 1/1 female (Q22444), 16 May 2001, collector unknown, carrots, NZAC.

Tyrophagus neiswanderi Johnston \& Bruce

Type material. Paratypes: U.S.A.: Ohio, Wooster, $1 / 1$ female, 1 male (IA-434), 1 Apr 1963, D.E. Johnston \& J.H. Gregory, cucumber in greenhouse, U.S.D.A. Holotype female and allotype male ($1 / 1$ female, 1 male (Acy $65 / 26$)), and paratypes ($1 /$ female, 1 tritonymph (Acy 65/26)), of Tyrophagus africanus Meyer \& Rodrigues: SOUTH AFRICA: Barberton, Katoen, 8 Aug 1960, M.K.P. Meyer, ARC-PPRI. Other material. NEW ZEALAND: AK: Auckland, 1/1 male (P.Q.A 998), 21 Apr 1970, N.F. Emery, diseased onions for export, MAF/A. Pukekohe, $1 / 1$ female [+ Acarus sp. 3 females] (P.Q. 6265), 10 Sep 1974, K Jan Shaw, garlic, MAF/A. Pukekohe, $1 / 1$ male (P.Q.E. 30), 13 Apr 1976, G. Aiken, onions, MAF/A. Pukekohe, $1 / 3$ females, 1 male, 8 Mar 1983, N.A. Martin, orchids, NZAC. Pukekohe, $2 / 5$ females, 1 male, 1 tritonymph (1, 2), 22 Mar 1983, collector unknown, orchid pots, NZAC. Pukekohe, $1 / 3$ females, 2 males, 5 Apr 1983, N.A. Martin, pots in orchid house, NZAC. Pukekohe, $1 / 4$ females, 2 males, 1 tritonymph, 5 Apr 1983, N.A. Martin, orchid house floor, NZAC. Auckland, Mt Albert Research Centre, $1 / 2$ females, 2 males, 7 Apr 1983, N.A. Martin, lab colony, NZAC. Ti Point, Leigh, 1/1 female, 2 males, 23 Sept 1985, R.A.J. White, Cymbidium, MAF/A. Pukekohe Research Station, $1 / 6$ females, 1 male [+ Tyrophagus communis 2 females] (19737), 22 Oct 1985, J.J.C. Scheffer, garlic cloves, MAF/A. Auckland, Albany, $1 / 1$ male, 13 Nov 1985, M. Stukey, host unknown, NZAC. Mangere (J. Chong), $1 / 7$ females, 2 males (21039/134/6), 18 Jun 1986, A. Cibilich, sticky tapes around grape vines, MAF/A. Auckland, Mt Albert Research Centre, 1/1 female [+ Tyrophagus communis 3 females], 3 Jul 1987, D. Allen, scale culture Rm 3, NZAC. Tuakau, $1 / 7$ females, 1 male, 1 tritonymph (1058), 29 Jun 1988, J. Iqbal, Phalaenopsis orchid flower buds, MAF/A. Auckland AQS, 1/ 2 females, 2 males, 3 tritonymphs, 3 protonymphs (26426), 4 Sep 1988, collector unknown, Pepino (Solanum muricatum) ex N.Z. Export Reject, MAF/A. Pukekohe, $2 /$ 17 females, 3 males, 23 Aug 1990, P. Workman, greenhouse cucumber leaves, NZAC. Pukekohe Research Orchard, $2 / 2$ females, 2 males [+ Tyrophagus communis 5 females, 3 males] (1, 2), 5 Mar 1991, N.A. Martin, cucumber leaf sprayed with dicofol, NZAC. Auckland, Ramarama, Cooper Rd., $2 / 10$ females, 1 male (1, 2), 2 May 1991, A. Nieuweahuijsen, Cymbidium orchid flower buds \& leaves, NZAC. Auckland, Waimauku, Taha Rd, $1 / 1$ female, 9 Apr 1997, T. Marais, green house tomatoes, NZAC. Mt Albert, 2/1 female, 1 male, 10 Aug 1998, P.J. Workman, orchid flower, NZAC. Auckland, Quarantine house PDD, $1 / 1 \mathrm{fe}-$
male, 1 male (A 103), 6 Apr 1962, T. over de Linden, grape leaves with galls, BMNH. Auckland, Quarantine house PDD, 1/1 female, 1 tritonymph (A 103), 9 Apr 1962, T. over de Linden, bud on gooseberry culture, BMNH. BP: Tauranga, 1/3 females (12850), 15 Nov 1982, R. Gosney, Cymbidium pollen caps, MAF/A. Tauranga, $1 / 4$ females, 2 males $[+$ Acarus sp. 1 male] (14256), 7 Jul 1983, L.Casten, Cymbidium pollen caps, MAF/A. Tauranga, Greenhouse Park Ltd., $1 / 5$ females, 3 tritonymphs (1993 (22572)), 9 Jun 1987, A. Gillanders, miniature cymbidium orchid, MAF/A. Katikati, Greenhouse Park, $4 / 14$ females, 3 males, 7 tritonymphs (1, 2, 3, 4), 25 Sep 1990, M. Penney, sprayed commercial Cymbidium orchid flowers, NZAC. MC: Christchurch, $2 / 5$ females, 3 males [+ Tyrophagus vanheurni 1 female, 1 male], 27 Aug 1979, L. Heath, Capsicum frutescens in glasshouse, MAF/A. Lincoln, DSIR, Canterbury Agricultural Science Centre, $2 / 7$ females, 7 males (1, 2), 10 Apr 1991, T. Jessop, plant material, quarantine room, NZAC. ND: Omahuta, $1 / 1$ female, 2 males, Feb 1974, G.R. Williams, short tailed bat, NZAC. Whangarei, $1 / 2$ females, 1 male, 1 tritonymph, 5 Oct 1978, G.E. Grant, orchid blooms, MAF/A. Maunga-turoto Dairy Factory, Northland, 1/7 females, 3 males, Aug 1989, F. Norman, NZAC. Whangarei, $6 / 15$ females, 17 males, 4 larvae, 26 Aug 1998, P.J. Workman, Cymbidium orchid (flower), NZAC. Nelson, Richmond, $2 / 1$ female, 3 males, 30 Sep 1982, C. Barton, Cymbidium orchids, MAF/A. Nelson, $1 / 1$ female, 1 male, 4 Aug 1983, N.A. Martin, orchid flower, NZAC. Nelson, 1/3 females, 2 tritonymphs (NPPRL Ref. 3/03/1043), 2003, M. O'Donnell, Prunus leaves, MAF/L. TK: Patea, $1 / 2$ females, 2 males, 4 tritonymphs, 25 Sep 1984, P. Thomsen, cucumber leaves in glasshouse, MAF/A. WI: Palmerston North, $1 / 1$ male, 15 Sep 1960, P May Clansen, Geranium, NZAC. Specific locality unknown: $1 / 6$ females, 3 males (P.Q.F. 149), 21 Sep 1978, G.E. Grant, orchids, MAF/A. Intercepted in New South Wales, Australia: 1/1 female (N108381, 023509NA), 25 Oct 2004, collector unknown, capsicums, AQIS/NSW. 1/2 females (N108476), 4 Nov 2004, collector unknown, Zantedeschia bulbs, AQIS/ NSW. Intercepted in Queensland, Australia: 1/1 female (Q103647, 15351QA), 18 Feb 2004, collector unknown, capsicums, AQIS/QLD. 1/1 female (BIN 39249), 23 Jun 2004, collector unknown, onions, AQIS/QLD.
AUSTRALIA: Intercepted in New Zealand: $1 / 1$ female (NPPRL Ref. 09/2003/4064), 2003, collector unknown, oranges, MAF/A.
GERMANY: Intercepted in New Zealand: $1 / 1$ male [+ Tyrophagus communis 1 female] (P.Q.A. 3465), 28 Apr 1974, P.D. Brown, corn, MAF/A.
NETHERLANDS: Intercepted in New Zealand: $1 / 3$ females, 1 male (P.Q.M. 741), 5 May 1969, J.E. Cross, bulbs (Amaryllidaceae) vallarta species, MAF/A. $1 / 1$ female, 2 males (NPPRL Ref. 09/2002/286), 16 Jan 2002, collector unknown, flower bulbs, MAF/A.
SOUTH AFRICA: Intercepted in Auckland, New Zealand: $1 / 3$ males, 1 tritonymph (P.Q. A7335), 20 Aug 1980, M.R. Wing, bulbs of Amaryllis hippeastrum, MAF/A.
U.K.: England, Slough, $2 / 2$ females, 1 male (Acy 89/532), 6 Sept 1989, S. Lynch, Culture X89/124, ARC-PPRI. Intercepted in Auckland, New Zealand:1/1 male [+ Tyrophagus communis 4 females, 1 male] (P.Q.A. 814), 21 Dec 1977, J. Chignell, Narcissus bulbs, MAF/A. 1/1 female (P.Q.A. 3371), 10 Jun 1978, S.J. Andrews, Epiphyllum sp.,

MAF/A. 1/3 males, 4 tritonymphs (P.Q.A. 2969), 14 May 1979, N. Lomax, soil and plant material (in garden, in a jar), MAF/A.
U.S.A.: Ohio: Olmstead Falls, $2 / 16$ females, 4 males (IA583), 1 May 1964, R.B. Neiswander, cucumber, Ohio State Univ. 1/1 male (IA-583), 1 May 1964, R.B. Neiswander, Lab culture of specimens feeding on cucumer plants, Ohio State Univ. 1/7 females, 2 males (Al 12994), 5 Jun 1964, collector unknown, lab culture, Ohio State Univ. $1 / 23$ females, 7 males, 1 tritonymph (Al 12994), 7 Jun 1964, collector unknown, lab culture, Ohio State Univ. Ohio, Olmstead Fall, $1 / 16$ females, 3 males (IA-583), 1 May 1964, R.B. Neiswander, cucumber, Ohio State Univ. Hot Dept. OSU, 1/4 females (AL 12993), 29 Apr 1965, W. Brooks, fruits and foliage of cucumber, Ohio State Univ. Intercepted in Auckland, New Zealand: $1 / 2$ females, 2 males, 1 protonymph (P.Q. 7237), 27 Jul 1980, J.R. Tabob, orchids, MAF/A. $1 / 1$ female, 2 tritonymphs, 1 protonymph (P.Q. A7431), 6 Sep 1980, E. Baigent, orchids, MAF/A. 2/ 1 female, 1 male (09/04/265), date unknown, collector unknown, lemons, MAF/A. $1 / 2$ females, 1 male (09/2002/ 751), date unknown, 18 Feb 2003, oranges, MAF/A. 1/2 females (09/2002/3597), C. Weston, 7 Aug 2002, Hibiscus sp., MAF/A. Intercepted in New South Wales, Australia: $1 / 1$ male [+ Tyrophagus communis 1 female] (\#N19 946), date unknown, collector unknown, orange, AQIS/NSW. 1/1 female (N42257, \#79809), 6 Dec 2001, collector unknown, lemons, AQIS/NSW.

Tyrophagus putrescentiae (Schrank)

Type material. Neotype male (designated by Roberston 1959): NETHERLANDS: Hilversum, $1 / 1$ male (No. 17, P6984), 22 Apr 1902, Oudemans, humus, RMNH.
Other material. NEW ZEALAND: WN: Lower Hutt, 1/1 female (K. 253), 22 Mar 1978, R. Waters, mushrooms, MAF/A. Intercepted in New South Wales, Australia: $1 / 3$ females + Tyrophagus communis 1 female (N108460), 3 Nov 2004, collector unknown, tulip bulbs, AQIS/NSW.
AUSTRALIA: TAS: Bass Strait, Fisher Island, $2 / 5$ females, 3 males (J10764, J10765), 2 Jan 1953, R. Mykytowycz, burrows \& nests of mutton birds, Puffinus tenuirostris, SAM.
Intercepted in Auckland, New Zealand: $1 / 1$ female (NPPRL Ref. 09/2002/1031), date unknown, collector unknown, Ranunculus sp. bulbs, MAF/A.
BRAZIL: Intercepted in Auckland, New Zealand: 1/13 females, 4 males (PQAK. 2708), 9 Dec 1977, K. Goodwin, orchids, MAF/A.
CHINA: mainland: Intercepted in Auckland, New Zealand: $1 / 1$ female, 2 males (NPPRL Ref. 09/2001/2643), 3 Aug 2001, collector unknown, garlic, MAF/A. Taiwan, Intercepted in Queensland, Australia: $1 / 1$ female, 1 male (Q18479), 5 May 2000, collector unknown, palm seed, AQIS/QLD.
ECUADOR: Intercepted in Auckland, New Zealand: 1/ 2 males (NPPRL Ref. 09/2002/2471), unknown, collector unknown, banana, MAF/A.
GERMANY: Landesaustalt für Fischerei Berlin, 3/1, female, 2 males (No. 17, P6981, No. 12, P6979, No. 13, P6980), Dec 1930, G. Harre, dooden Tinca tinca, RMNH.
JAPAN: Intercepted in New Zealand: $1 / 5$ females (NPPRL Ref. 09/2001/3310), 3 Oct 2001, collector unknown, tulip bulbs, MAF/A.

NETHERLANDS: Bremen, $1 / 13$ females [+ Rhizoglyphus sp. 1] (No. 15, P6982), 29 Nov 1928, Hyacinth, F. Koenike, RMNH. Arnhem, $1 / 1$ female (P6987), Feb 1932, Citrus aurantium, Zuid-Europa, Oudemans, RMNH. Intercepted in Auckland, New Zealand: $1 / 2$ females, 2 males (P.Q.M. 60), 4 Dec 1962, H.R. Dalley, tulip bulbs, NZAC (Figures). 1/1 male (NPPRL Ref. 09/2002/4653), date unknown, collector unknown, muscari bulb, MAF/A. $1 / 5$ females (NPPRL Ref. 09/2002/4654), date unknown, collector unknown, Narcissus bulbs, MAF/A.
U.S.A.: Intercepted in Auckland, New Zealand: $1 / 2$ females, 1 male [+ Acarus sp. 2 females] (NPPRL Ref. 09/ 2002/2352), 16 May 2002, collector unknown, Gladiolus, MAF/A. 1/1 female (NPPRL Ref. 09/2002/585), 4 Feb 2002, collector unknown, oranges, MAF/A.

Tyrophagus robertsonae Lynch, 1989

Type material. Holotype male: U.S.A., S. Carolina, Savannah River Ecology Laboratory, $1 / 1$ male (indicated) +1 (paratype) male, 2 (paratype) tritonymphs (1989.3.6.14), D. Coleman. Rec'd Slough Lab., 1968, soil, BMNH. Paratypes: $1 / 1$ male, 2 tritonymphs + holotype (1989.3.6.14), as holotype, $1 / 4$ females, 4 males (1989.3.6.22), as holotype.

Other material. NEW ZEALAND: MC: Lincoln, Canesis Network Ltd., 12/22 females, 3 tritonymphs, 7 protonymphs (\#05-622 Z), 26 Jan 2005, C. Shorter, culture, NZAC. Lincoln, Canesis Network Ltd, 2/1 female, 1 male, 18 Feb 2005, C. Shorter, culture, NZAC. Intercepted in New South Wales, Australia: $1 / 1$ female (N44425), 26 Apr 2002, collector unknown, onions, AQIS/NSW. 1/7 females (N35112), 7 Jun 2000, collector unknown, onions, AQIS/ NSW.
THAILAND: Intercepted in Queensland, Australia: 1/ 1 female (B93875), 20 Jul 2004, collector unknown, mangosteen, AQIS/QLD.

Tyrophagus savasi Lynch, 1989

Type material. Holotype male: ENGLAND: Manchester, 1/1 male (indicated) +4 (paratype) males (1989.3.6.1), Via: Dr A.M. Hughes. Rec'd Slough Lab., 1967, biscuits, BMNH. Paratypes: $1 / 4$ males + holotype male (1989.3.6.1), as holotype. $1 / 4$ females (1989.3.6.3), as holotype.
Other material. NEW ZEALAND: DN: Dunedin, Leith Valley, 1/1 female (\#05-680 Z), 23 Jun 2005, D. O'Connell, Coprosma lucida, NZAC. TK: Eltham: Co-op, Rennett Co. Ltd., $3 / 2$ females, 2 males [+ Tyrophagus longior 5 females, 6 males, 1 tritonymph, 1 protonymph $+T$. vanheurni 2 females, 3 males], 27 Oct 1972, G.A.H. Helson, cheese, MAF/A. WN: Levin, $1 / 1$ female, 3 tritonymphs, 2 larvae [+ Acarus sp. 1 tritonymph, 3 larvae], 23 Apr 1965, J.F. Pritchard, cheese, MAF/A. $1 / 8$ females, 2 males, 2 tritonymphs (P.Q.A. 208), 28 Dec 1977, P. Phillips, Narcissus bulbs, MAF/A. $2 / 1$ female, 2 males (NPPRL Ref. 3/ 03/688 (1), (5)), 2003, collector unknown, washed off bees (Bee Surveillance), MAF/L.

Tyrophagus similis Volgin, 1949

Other material. NEW ZEALAND: AK: Auckland, Mt Albert, $1 / 3$ females, 1 male, 15 Mar 1977, P. Singh, nematode culture, NZAC. DN: Dunedin, $1 / 1$ female [+

Mycetoglyphus fungivorus 2 females and 2 males], Feb 1976, F.J. Austin, black backed gull colony nests and debris, NZAC. HB: Havelock North Ecology Div., $1 / 1$ female [+ Tyrophagus longior 1 female, 1 male], 14 Nov 1977, collector unknown, box at end of storeroom, nest 77/159, NZAC. 1/1 female [+ Tyrophagus longior 1 female + Lepidoglyphus sp. 2 females], 14 Nov 1977, collector unknown, nest of Sturnus vulgaris, box 1, nest 77/163, NZAC. 1/2 females, 1 male [+ Tyrophagus longior 1 female, 1 male], 14 Nov 1977, collector unknown, nest of Sturnus vulgaris, box 4, nest 77/160, NZAC. $2 / 3$ females, 1 tritonymph [+ Tyrophagus curvipenis 2 female + T. longior 1 female], 14 Nov 1977, collector unknown, nest of Sturnus vulgaris, box 8 , nest $77 / 158$, NZAC. $1 / 3$ females, 1 male, 4 Jan 1978, collector unknown, nest at power pole 5 , nest $78 / 3$, NZAC. 1/4 females, 1 tritonymph [+ Tyrophagus curvipenis 3 females], 4 Jan 1978, collector unknown, nest at power pole 19, nest 78/4, NZAC. MB: Blenheim, $1 / 8$ females, 4 males, 3 tritonymphs (Q 82), 7 Mar 1974, D.W. McCallum, garlic Ivory orchards, MAF/A. MC: Lincoln, $1 / 5$ females, 1 protonymph (J10725), Aug 1935, L. M, host unknown, SAM. Christchurch, Bradley, $1 / 1$ male, 3 May 1980, A.M. F., K 'fruit' fruit, NZAC. Southbridge, $2 / 2$ females (NPPRL Ref. 3/01/2284), 2001, collector unknown, growing tips of spinach, MAF/L. NN: Nelson, Transport Nelson Holdings Farm, 3/20 females, 3 males [+ Rhizoglyphus robini 1 male] (461244), 22 Sept 1969, N.A. Martin, host unknown, NZAC. Nelson, 88 Valley, Parkes Farm, 1/12 females (Grid Ref. S20 369064, C144), 11 Nov 1969, N.A. Martin, NZAC. 3/14 females, 2 males, 8 tritonymphs (Grid Ref. S20 369064, C148), 11 Nov 1969, N.A. Martin, NZAC. 1/1 male (Grid Ref. S20 369064, C149), 11 Nov 1969, N.A. Martin, NZAC. 3/1 female, 2 tritonymphs (Grid Ref. S20 369064, H21), 14 Jul 1970, N.A. Martin, NZAC. $1 / 1$ male (Grid Ref. S20 369064, B173), 14 Oct 1970, N.A. Martin, NZAC. 1/1 male (Grid Ref. S20 369064, C7), 17 Nov 1970, N.A. Martin, NZAC. $1 / 1$ tritonymph (Grid Ref. S20 369064, C13), 17 Nov 1970, N.A. Martin, NZAC. Nelson, Richmond, Swamp Rd, 1/1 female, 1 tritonymph, 30 Jul 1972, F. Doyce, white heron (Egretta alba modesta), NZAC. TK: Hawera, 1/ 2 males (L829, P.E.Q. 22750), 15 Oct 1981, L.T.W. Mattson, orchid, MAF/A. WA: Masterton, $1 / 1$ male, 1 tritonymph, 1 protonymph [+ Sancassania sp. 1 female, 2 tritonymphs, 1 deutonymph, 1 protonymph] (288), 19 Nov 1979, A. Bennet, bean seeds in vegetable garden, MAF/A. WN: Waikanae, $2 / 2$ males [+ Myctoglyphus fungivorus 5 females, 2 males, 2 tritonymphs + Sancassania sp. 1 tritonymph], 21 Oct 1965, A. Mear, bean plumules in soil, MAF/A. Levin, glasshouse, Lower Hutt, $1 / 4$ females, 1 male, 3 tritonymphs (M174 (repeat)), 11 Jun 1971, Lesley Muir, spinach, MAF/A. Levin, HRC, Kimberley Rd., 7/27 females, 20 males, 19 tritonymphs, 16 protonymphs, 1 larva [+ Sancassania sp. 2 females], 7 Jun 1973, D. Steven, sandy soil in pots of Rama ryegrass, MAF/A.
AUSTRALIA: NSW: Broken Hill, $1 / 2$ females [+ Schwiebea sp. 1 female] (J10731), date unknown, Chad, on dead Rhopoea larva [grub], SAM. Lisatow, $1 / 3$ females, 1 male (J10762), 18 Sep 1957, K.M. Moore, ex larva of Zenarge turneri, SAM. Lisatow, $1 / 4$ females, 1 male (J10763), 18 Sep 1957, K.M. Moore, ex larva of Zenarge turneri, SAM. SA: Adelaide Plains, Adelaide, 2/7 females, 9 males (J10714, J10715), Feb 1934, D.C. S, in mushrooms, SAM. Adelaide Plains, Stepney, $1 / 8$ females, 6 males, 1 tritonymph
(J10716), 20 Jun 1945, collector unknown, attacking mushrooms, SAM. Flinders Ranges, Wirrabara, $1 / 1$ female, 2 males (J10786), Sep 1952, collector unknown, host unknown, SAM. Kangaroo Island, 4 mile, SW of American River, 6/3 females, 1 male, 2 tritonymphs (J10745, J10746, J10747, J10748, J10749, J10750), 21 Sep 1959, H.M. Cooper, in tea-tree scrub on tableland, SAM. Mt Lofty Ranges, Waitpinga, 3/3 females (J10742, J10743, J10744), 26 May 1960, collector unknown, moss, SAM. Mt Lofty Ranges, 3 km [2 mile] N. of Myponga, at approx. $500 \mathrm{ft}, 8 /$ 15 females, 7 males, 2 tritonymphs (J10734, J10735, J10736, J10737, J10738, J107394, J10740, J10741), 4 Jun 1962, H.M. Cooper, host unknown, SAM. VIC: Mt Dandenong, $1 / 1$ female, 2 males (J10711), 17 May 1932, J.W. R, bat debris, SAM. Victoria, K.T.R.S. Frankston, 5/1 female, 2 males, 2 tritonymphs (5476), 14 Feb 1973, R. Shepherd, Rabbit (Oryctolagus cuniculus), VM. WA: Wooroloo, $1 / 3$ females, 3 males (J10723), Aug 1932, H. Womersley, host unknown, SAM. Jennacubbine, 31 26'S, 116 43'E, 5/2 females, 2 males, 1 tritonymph (Horbury18), 26 Jul 1995, R. Horbury, pasture, ANIC. Intercepted in New Zealand: $1 / 3$ females [+ Tyrophagus communis 1 female] (P.Q.A. 3104), 15 Apr 1978, J. Jones, Narcissus bulbs, MAF/A. 2/11 females, 3 males (P.Q.A 4468), 25 Dec 1978, J. Bongiovanni, seeds and debris from tent, MAF/A. NETHERLANDS: U.K.: Kent, Ashford, Wye, $1 / 5$ females, 2 males (184(1)) (as holotype, allotype, and paratypes of Tyrophagus oudemansi Robertson), 5 Mar 1951, W Jan St.G. Light, mushrooms, BMNH. Intercepted in New Zealand: $1 / 1$ female, 3 males, 2 tritonymphs (PQJ 154), 19 Mar 1970, C.A.F. Jaques, dahlia tubers, MAF/A. $1 / 1$ female (PQA 3454), 10 Apr 1974, M.B. Henwood, Lilium bulbs, MAF/A. 1/1 male [+ Tyrophagus longior 2 females, 2 males] (21132), 8 Jul 1986, J. Nightingala, Dahlia, MAF/A.

SOUTH AFRICA: Randebosch CP, $1 / 1$ female, 1 male (J10729), 5 Aug 1930, H. Womersley, host unknown, SAM. U.K.: Intercepted in New Zealand: $1 / 1$ male [+ Tyrophagus longior 4 females] (P.Q.A. 2891), 8 Feb 1978, N. Lomax, Dahlia bulb, MAF/A. 1/1 female [+ Tyrophagus longior 3 females, 3 males] (P.Q.A. 6349), 27 Dec 1979, A. Habrake, acorns Quercus sp. in Kew gardens, MAF/A.

Tyrophagus vanheurni Oudemans

Type material. Lectotype male (designated by Robertson 1959): NETHERLANDS: Twello, $1 / 1$ lectotype male +4 females +1 male (No. 6, P6993), 10 Mar 1924, van Heurn, cocosnoot, RMNH.
Other material. NEW ZEALAND: AK: Auckland, Titirangi, 2/4 females, 2 males (1, 2), 7 Oct 1976, I. Gordon, injured living Macadamia husk, NZAC. Pukekohe, $1 / 2$ males [+ Acaridae 1 male] (216), 13 Nov 1985, Thompson, host unknown, NZAC. Auckland, Mt. Albert, $1 / 1$ female, 1 male, 12 Aug 1988, P. Herbert, Orthodera ministralis ootheca on male scale insect, NZAC. AU: Auckland Is, Masked I, DSIR Ecology Division, 1/1 female, Feb 1973, collector unknown, Mus musculus, NZAC. Auckland Is, Erebus Cove, DSIR Ecology Division, $1 / 1$ female, Feb 1973, collector unknown, Mus musculus, NZAC. Auckland Is, Camp Cove, DSIR Ecology Division, $1 / 4$ males, 2 tritonymphs [+ Glycyphagus domesticus 1 tritonymph], Feb 1973, collector unknown, Mus musculus, NZAC. BP: Te Puke, 1/1 female, Dec 1974, R. Tustam, sphecids stick-trap, NZAC. CL: Little Barrier

Is., $1 / 3$ females [+ Glycyphagus domesticus 1 female] (36), 30 Jul 1953, collector unknown, Rattus exulans, NZAC. HB: Hawkes Bay, Haumoana, $1 / 1$ female, 1 tritonymph [+ Glycyphagidae 1 female], 21 Aug 1970, collector unknown, dead house-fly and dead fruit flies, NZAC. KE: Kermadec Is, Raoul I, 3/6 females (1, 2, 28), Jul-Aug 1950, collector unknown, Rattus norvegicus, NZAC. Kermadec Is, $1 / 1$ female, 13 Aug 1973, J. Ireland, dead Rattus norvegicus at hostel, NZAC. Kermadec Is, $1 / 1$ female, 25 Sep 1973, J. Ireland, dead Rattus exulans at hostel, NZAC. MC: Christchurch, $1 / 5$ females, 2 males [+ Tyrophagus comтиnis 1 female, 1 male], 27 Aug 1979, L. Heath, Capsicum frutescens in glasshouse, MAF/A. Christchurch, Barry's Bay Christchurch Coolstores, $1 / 1$ female [+ Glycyphagidae 2 females] (NPPRL Ref. 88/691), 25 Jul 1988, A. Cooke, settlers, MAF/L. ND: Waipoua forest, $1 / 1$ female, 4 males, 1 larva, 22 Nov 1944, P.L. Robertson, debris in collection of Culex antipodeus, NZAC. Mokohinau Is, $1 / 1$ male (105), 24-28 Nov 1973, collector unknown, Rattus exulans, NZAC. Omahuta, $1 / 2$ females, 1 male [+ Glycyphagus destructor 1 female], Feb 1974, G.R. Williams, short-tailed bat, NZAC. SI: Leas Bay Stewart I, 4/17 females, 10 males, 9 tritonymphs (103), 14 Apr 1974, collector unknown, Rattus exulans, NZAC. TK: Eltham: Co-op, Rennet Co. Ltd, $3 / 2$ females, 2 males [+ Tyrophagus longior 5 females, 6 males, 1 tritonymph, 1 protonymph + T. savasi 2 females, 3 males], 27 Oct 1972, G.A.H. Helson, cheese, MAF/ A. Hawera, $2 / 13$ females, 2 males, 29 Apr 1975, D.C.M. Manson, cheese of kiwi factory, MAF/A. TO: Murupara, 1/ 1 female (NPPRL Ref. 3/99/667/3), 6 Apr 1999, G. \& P. Martin, bee surveillance, washings off bees, MAF/L. Murupara, $2 / 2$ females (NPPRL Ref. 3/99/668), 7 Apr 1999, G. \& P. Martin, bee surveillance, washings off bees, MAF/L. Murupara, $1 / 1$ male (NPPRL Ref. 3/99/735/1), 15 Apr 1999, G. \& P. Martin, bee surveillance, washings off bees, MAF/L. WI: Kimbolton, $1 / 1$ female (NPPRL Ref. 3/99/441/6), 11 Mar 1999, K. Matthewman, bee surveillance, washings off bees, MAF/L. WN: Wellington, $1 / 1$ male [+ Carpoglyphus lactis 1 female], 15 Jun 1955, collector unknown, Rattus rattus, NZAC. Wellington, Wallaceville, $1 /$ females $+T$. communis (J10726), Apr 1946, L.K. Whitton, pollen from hive, SAM. WO: Waikato River, Hamilton, Univ. of Waikato, $1 / 1$ male [+ Tyrophagus communis 1 female], date unknown, J. Boubee, host unknown, NZAC.
AUSTRALIA: Macquarie I, 5/1 female, 7 males, 46 tritonymphs, 2 larvae (80), 1959, collector unknown, Rattus rattus (2 heads only), NZAC.
NETHERLANDS: Twello, $1 / 4$ females, 1 male +1 lectotype male (No. 6, P6993), as lectotype. 27/27 females (remounted) (No. 4, P6991), Mar 1924, other data as lectotype. TUVALU: Funa Futi Atoll, Ellice Is., $1 / 1$ female (53), 1630 Sept 1951, collector unknown, Rattus exulans, NZAC. U.K.: Witts, Westbury, $2 / 2$ females, 2 males (P.L.R. Var. Ser. III, Nos. 83, 84, P.L.R. Var. Ser. III, Nos. 7, 8), 8 Dec 1950, collector unknown, Welsh cheddar cheese in store, ANIC.

Australasian and Oceanian species not present in New Zealand

Tyrophagus australasiae (Oudemans)

Type material. Lectotype male (designated by Robertson 1959), INDONESIA (as Nieuw Guinea): Jamur, 1/lectotype male +1 male (No. 8, P6921), 6 Aug 1903, De Beaufort and Lorentz, on the head of a crowned pigeon (Goura sp.), labelled "Tyroglyphus australasiae Oudemans 1915, ox dors., vent., No. 8, P6921, Op kop van gowia, Jamoer, (Nieuw Guinea), 6.8.1903, De Beaufort en Lorentz", RMNH.
Other material. INDONESIA, Salatiga, $1 / 3$ males (including a male designated as lectotype of T. javensis by Robertson (1959) (misidentification, discussed below in T. javensis)) (No. 6, P6610), Mar 1915, P.V.D. Goof, on eggs of ant Plagiolepis longipes, labelled "Tyroglyphus australasiae Oudemans, ơ dors., vent., lat., No. 6, P6610, Op eieren van Plagiolepis longipes (mier), Salatiga, Maart 1915, P.V.D. Goof", RMNH.

Tyrophagusjavensis (Oudemans)

Type material. Lectotype female (designated in this study): INDONESIA (Nederlandsch Oost Indie): 1/1 female (No. 2, 2020, P6756), Java, Salatiga, Mar 1915, van der Goof, workings of ant (Plagiolepis longipes Jerd.), RMNH.
Other material. AUSTRALIA: SA: Adelaide Plains, Port Adelaide, $1 / 4$ females $+T$. communis 3 females, 1 male (J10766), Jan 1954, H. Womersley, bark scrapings, SAM. Intercepted in Auckland, New Zealand: $1 / 2$ females, 1 tritonymph (NPPRL Ref. 09/2003/4582), 2003, collector unknown, water melon, MAF/A.
ECUADOR: Intercepted in Auckland, New Zealand: 1/ 3 females (P.Q.A. 8333), 7 Dec 1976, T. Cullen, banana, MAF/A. 1/1 male [+ Winterschmidtiidae 1 male] (NPPRL Ref. 09/2001/4424), 7 Dec 2001, collector unknown, banana, MAF/A. $1 / 2$ females [+ Winterschmidtiidae 1 female] (NPPRL Ref. 09/2002/550), 4 Feb 2002, collector unknown, banana, MAF/A. 1/1 female (NPPRL Ref. 09/2002/572), 4 Feb 2002, collector unknown, banana, MAF/A. 1/1 female (NPPRL Ref. 09/2002/759), 5 Feb 2002, collector unknown, banana, MAF/A. 1/1 female (NPPRL Ref. 09/2002/4299), 2002, collector unknown, banana, MAF/A. $1 / 1$ male (NPPRL Ref. 09/2002/4537), 2002, collector unknown, banana, MAF/A. 1/2 females (NPPRL Ref. 09/2004/2232), 2004, collector unknown, banana, MAF/A.
PANAMA: Intercepted in Auckland, New Zealand: 1/1 female (NPPRL Ref. 09/2004/3372), 2004, collector unknown, banana, MAF/A.
PHILIPPINES: Intercepted in Auckland, New Zealand: 1/1 female (P.Q.A. 522), 18 Oct 1977, D. Farr, banana, MAF/A. 1/6 females (P.Q.A. 548), 19 Oct 1977, R. Steele, banana, MAF/A. $1 / 1$ female (NPPRL Ref. 09/2001/2602), 30.vii.2001, collector unknown, banana, MAF/A. $1 / 1$ female (NPPRL Ref. 09/2002/4379), 2002, collector unknown, banana, MAF/A. $1 / 1$ female (NPPRL Ref. 09/2003/ 590), 2003, collector unknown, banana, MAF/A. 1/1 female [+ oribatid 1] (NPPRL Ref. 09/2003/933), 2003, collector unknown, banana, MAF/A. $1 / 1$ female [+ Winterschmidtiidae 2 females, 1 tritonymph] (NPPRL Ref.

09/2003/5735), 2003, collector unknown, banana, MAF/ A. $1 / 1$ female (NPPRL Ref. 09/2003/6968), 2003, collector unknown, pineapple, MAF/A. 1/1 female [+ Tyrophagus destructor 1 female + Winterschmidtiidae 2 females] (NPPRL Ref. 09/2003/6992), 2003, collector unknown, banana, MAF/ A. $1 / 1$ female (NPPRL Ref. 09/2003/6625), 2003, collector unknown, banana, MAF/A. 1/2 females (NPPRL Ref. 09/2004/501), 2004, collector unknown, banana, MAF/A. $1 / 1$ male (NPPRL Ref. 09/2004/1073), 2004, collector unknown, banana, MAF/A. $1 / 1$ female, 1 tritonymph (NPPRL Ref. 09/2004/1183), 2004, collector unknown, banana, MAF/A. $1 / 1$ female, 1 tritonymph (NPPRL Ref. 09/2004/1303), 2004, collector unknown, banana, MAF/ A. $1 / 2$ females, 1 male, 1 tritonymph [+ Winterschmidtiidae 2 females] (NPPRL Ref. 09/2004/1692), 2004, collector unknown, banana, MAF/A. 1/1 female (NPPRL Ref. 09/ 2004/2231), 2004, collector unknown, banana, MAF/A. 1/ 1 female, 1 tritonymph (NPPRL Ref. 09/2004/2319), 2004, collector unknown, banana, MAF/A. $1 / 1$ female [+ Winterschmidtiidae 1 tritonymph] (NPPRL Ref. 09/2004/ 2531), 2004, collector unknown, banana, MAF/A. $1 / 1$ female [+ Winterschmidtiidae 2 females, 1 tritonymph] (NPPRL Ref. 09/2004/2695), 2004, collector unknown, banana, MAF/A. 1/1 tritonymph [+ Winterschmidtiidae 1 female] (NPPRL Ref. 09/2004/2847), 2004, collector unknown, banana, MAF/A. 1/3 females (NPPRL Ref. 09/2004/ 2956), 2004, collector unknown, banana, MAF/A. 1/3 females (NPPRL Ref. 09/2004/3169), 2004, collector unknown, banana, MAF/A. 1/3 females (NPPRL Ref. 09/2004/ 3426), 2004, collector unknown, banana, MAF/A. 1/2 females, 1 tritonymph (NPPRL Ref. 09/2004/3346), 2004, collector unknown, banana, MAF/A. $1 / 1$ female, 1 male (NPPRL Ref. 09/2004/3454), 2004, collector unknown, banana, MAF/A. 1/2 females (NPPRL Ref. 09/2004/3457), 2004, collector unknown, banana, MAF/A. 1/3 tritonymphs (NPPRL Ref. 09/2004/3478), 2004, collector unknown, banana, MAF/A. 1/1 female (NPPRL Ref. 09/2004/3769), 2004, collector unknown, banana, MAF/A. $1 / 1$ female (NPPRL Ref. 09/2004/3786), 2004, collector unknown, banana, MAF/A. 1/2 females (NPPRL Ref. 09/2004/3810), 2004, collector unknown, banana, MAF/A. $1 / 1$ female (NPPRL Ref. 09/2004/3810), 2004, collector unknown, banana, MAF/A. $1 / 1$ female, 1 larva [+ Tarsonemidae 1 female] (NPPRL Ref. 09/2004/3913), 2004, collector unknown, banana, MAF/A. $1 / 1$ female, 1 protonymph (NPPRL Ref. 09/2004/3989), 2004, collector unknown, banana, MAF/ A. $1 / 1$ male (NPPRL Ref. 09/2004/4072), 2004, collector unknown, banana, MAF/A. 1/1 female [+ oribatid 1] (NPPRL Ref. 03/04/1948), 2004, collector unknown, banana, MAF/L. $1 / 5$ females [+ Winterschmidtiidae 1 female] (NPPRL Ref. 03/04/2426), 2004, collector unknown, banana, MAF/L. 1/3 females (NPPRL Ref. 03/04/2701), 2004, collector unknown, banana, MAF/L.
SINGAPORE: Intercepted in Auckland, New Zealand: 1/1 male, 2 larvae (NPPRL Ref. 09/2003/6492), 2003, collector unknown, banana, MAF/A.
THAILAND: Intercepted in Auckland, New Zealand: 1/1 female, 1 tritonymph (NPPRL Ref. 09/2002/2194), 2002, collector unknown, banana, MAF/A.
Note: banana is assumed to be Musa sapientum in above records.

Tyrophagus pacificus sp. n.

Type material. Holotype female: NIUE I, Intercepted in New Zealand: $1 / 1$ female (indicated) +11 (paratype) females, 1 (paratype) male, (P.Q.A. 2439), 15 Jan 1979, T. Pattison, plant parts, NZAC. Paratypes: $1 / 11$ females, 1 male + holotype female, as holotype.
Other material. COOK IS: Intercepted in New Zealand: $1 / 1$ female, 1 male (P.Q.A. 8620), 23 Mar 1977, D. Rogers, banana, NZAC.
FIJI: Intercepted in New Zealand: $1 / 2$ females, 2 tritonymphs [+ Tarsonemidae 1 female] (P.Q.A. 6576), 18 Feb 1980, S. Aldridge, guavas, MAF/A. 1/3 females, 1 male (P.Q.H. 107), 5 Aug 1963, C.A.F. Jaques, part of coconut in sea, MAF/A.
SAMOA: 1/1 female (P.Q.A. 6072), 4 Apr 1974, P.D. Brown, Cerbera mallam seeds, MAF/A.
TONGA: Intercepted in New Zealand: $2 / 1$ female, 1 male, 1 tritonymph [+ Calvolia sp. 1 female] (P.Q.A. 8313), 3 Dec 1976, M.B. Piles, banana, MAF/A. 1/4 females (P.Q.A. 8547), 3 Mar 1977, H.J. Webbev, banana, MAF/A. 1/2 females [+ Tarsonemidae 2 females] (P.Q.A. 164), 22 Jul 1977, T. Pattison, banana, MAF/A. $1 / 1$ female [+ Tarsonemidae 1 nymph] (P.Q.A. 8797), 10 May 1977, D.W. White, banana, MAF/A. $1 / 4$ females, 3 tritonymphs [+ Winterschmidtiidae 5 mites] (A. 971), 8 Feb 1978, P.J. Doherty, banana, MAF/A. $1 / 2$ females [+ Winterschmidtiidae 2 mites] (A. 1620), 14 Jul 1978, S.M. Herries, banana, MAF/A. 1/1 female (P.Q.A. 1622), 14 Jul 1978, S.M. Herries, banana, MAF/A. $1 / 1$ female [+ Tarsonemidae 2 females] (P.Q.A. 1623), 17 Jul 1978, K.J. Shaw, banana, MAF/A. $1 / 1$ female (P.Q.A. 1730-34), 17 Aug 1978, K.J. Shaw, banana, MAF/A. $1 / 6$ females, 4 males, 2 tritonymphs, 1 protonymph [+ Winterschmidtiidae 2 females] (A. 1827), 1 Sep 1978, J. Still, banana, MAF/A. 1/1 male, 6 tritonymphs (P.Q.A. 2136), 16 Nov 1978, T. Pattison, banana, MAF/A. TONGA \& SAMOA: $1 / 1$ male (A. 8076), 7 Sep 1976, M.B. Piles, banana, MAF/A.
Other material. TONGA: Intercepted in New Zealand: 1/1 female (NPPRL Ref. 09/2003/1215), date unknown, collector unknown, coconut, MAF/A. 1/1 female [+ Tyrophagus xenoductus holotype female, 2 (paratype) males, 1 (paratype) tritonymph (P.Q.A. 8563), 9 Mar 1977, S. Hevvies, bananas, NZAC. 1/2 females [+ Tyrophagus xenoductus 2 paratype females] (P.Q.A. 100), 27 Apr 1977, J. Bongiovanni, bananas, MAF/A. $1 / 1$ female [+ Tyrophagus pacificus 2 females + Calvolia sp. 9 females] (P.Q.A. 859), 6 Jan 1978, S.M. Aldridge, bananas, MAF/A.

Tyrophagus perniciosus Zakhvatkin

Other material. AUSTRALIA: QLD: Stanthorpe, $1 / 1$ female (J10784), 21 Sep 1953, A. May, on tomato (large numbers, serious damage to seed \& newly germinating plants), SAM. SA: Adelaide Plains, $1 / 1$ female (J10768), 15 Oct 1957, collector unknown, in budgerigar cage, SAM. SA: Adelaide Plains, $1 / 4$ females, 5 males, 7 tritonymphs, 1 protonymph (J10769), 15 Oct 1957, collector unknown, in budgerigar cage, SAM. SA: Adelaide Plains, $5 / 5$ females (J10770), 15 Oct 1957, collector unknown, in budgerigar cage, SAM.

Tyrophagus tropicus Robertson

Type material. Holotype male: NIGERIA: Lagos: $1 / 1$ male +1 (paratype) male (P.L.R. Var. Ser. X (9, 10)), 31 Oct 1951, collector unknown, palm kernel dust, BMNH. Allotype female: $1 / 1$ female +1 (paratype) female (P.L.R. Var. Ser. X $(49,50)$), other data as holotype. Paratypes: 1/ 1 male + holotype male (P.L.R. Var. Ser. X (9, 10)), as holotype; $1 / 1$ female + allotype female (P.L.R. Var. Ser. X $(49,50))$, as allotype.
Other material. AFRICA: 1/1 female + Tyrophagus communis 2 females + Proctolaelaps pygmaeus 1 (P.Q.A. 2786), 3 Apr 1979, K. Shaw, Cocoa beans, MAF/A.
CHINA: Hong Kong: $1 / 1$ female + Tyrophagus communis 3 females (P.Q.A. 1740), 18 Aug 1978, V. Ovens, dried fruit, MAF/A. $1 / 2$ females, 1 male, 1 tritonymph + Tyrophagus communis 1 female, 3 males (P.Q.A. 4872), 26 Apr 1979, R. Barnett, dried lychees, MAF/A.
MALAYSIA: Intercepted in New Zealand: 2 females, 1 male (A 1306), 15 May 1978, collector unknown, dried fruit, MAF/A.
NIGERIA: Lagos: $1 / 2$ males (P.L.R. Var. Ser. X, Nos. 11, 12), other data as holotype, ANIC. $1 / 2$ females (P.L.R. Var. Ser. X, Nos. 65, 66), other data as holotype, ANIC.
SAMOA: Intercepted in New Zealand: 1 male, 1 protonymph + Tyrophagus communis 1 female, 1 male, 2 tritonymphs (P.Q.A. 3577), 6 Jun 1973, P.G. Whitham, bananas, MAF/A.
WEST AFRICA: Intercepted in New Zealand: 1 male (P.Q.M. 1270), 11 May 1973, G. Aiken, Theobroma cacao, MAF/A.

Tyrophagus womersleyi sp. n.

Type material. Holotype female: AUSTRALIA: Intercepted in New Zealand: $1 / 1$ female (indicated) +2 (paratype) females, 9 Oct 1978, B. Sukha, pineapples, NZAC. Paratypes: $1 / 2$ females + holotype female, as holotype.

Tyrophagus xenoductus sp. n.

Type material. Holotype female: TONGA: Intercepted in New Zealand: $1 / 1$ female (indicated), 1 allotype male, 1 (paratype) male, 1 (paratype) tritonymph [+ Tyrophagus pacificus 1 female] (P.Q.A. 8563), 9 Mar 1977, S. Hevvies, bananas, NZAC. Paratypes: $1 / 2$ males, 1 tritonymph + holotype female, as holotype. TONGA: Intercepted in New Zealand: $1 / 2$ females [+ Tyrophagus pacificus 2 females] (P.Q.A. 100), 27 Apr 1977, J. Bongiovanni, bananas, MAF/A. $1 / 2$ females [+ Tyrophagus pacificus 1 female + Calvolia sp. 9 females] (P.Q.A. 859), 6 Jan 1978, S.M. Aldridge, bananas, MAF/A.

Fig. 1. Tyrophagus communis sp. n. (female). Dorsal view of idiosoma.

Fig. 2. Tyrophagus communis sp. n. (female). Ventral view of idiosoma.

Fig. 3. Tyrophagus communis sp. n. (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, prodorsal shield; G, coxa II; H, copulatory opening and spermatheca; I, copulatory opening and spermatheca.

Fig. 4. Tyrophagus communis sp. n. (female). A, coxae I-IV; B, genital opening; C, anus; D, solenidia and famulus of tarsus I; E, solenidion of tarsus II.

Fig. 5. Tyrophagus communis sp. n. (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 6. Tyrophagus communis sp. n. (male). Dorsal view of idiosoma.

Fig. 7. Tyrophagus communis $\mathbf{s p}$. \mathbf{n}. (male). Ventral view of idiosoma.

Fig. 8. Tyrophagus communis sp. n. (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, prodorsal shield; G, ventral view of aedeagus; H , lateral view of aedeagus; I, lateral view of aedeagus.

Fig. 10. Tyrophagus communis sp. n. (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 11. Tyrophagus communis sp. n. (tritonymph). Dorsal view of idiosoma.

Fig. 12. Tyrophagus communis sp. \mathbf{n}. (tritonymph). Ventral view of idiosoma.

Fig. 13. Tyrophagus communis sp. n. (tritonymph). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, genital opening; E, anus.

Fig. 14. Tyrophagus communis sp. n. (tritonymph). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 15. Tyrophagus communis sp. n. (protonymph). Dorsal view of idiosoma.

Fig. 16. Tyrophagus communis sp. n. (protonymph). Ventral view of idiosoma.

$20 \mu \mathrm{~m}$
A-H
c

Fig. 17. Tyrophagus communis sp. n. (protonymph). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, genital opening; F, anus; G, solenidia and famulus of tarsus I; H, solenidion of tarsus II.

Fig. 18. Tyrophagus communis sp. n. (protonymph). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 19. Tyrophagus communis sp. n. (larva). Dorsal view of idiosoma.

Fig. 20. Tyrophagus communis sp. n. (larva). Ventral view of idiosoma.

Fig. 21. Tyrophagus communis sp. n. (larva). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, Claparède organ; E, anus.

c

Fig. 22. Tyrophagus communis sp. n. (larva). A, leg I; B, leg II; C, leg III.

Fig. 23. Tyrophagus curvipenis Fain \& Fauvel, 1993 (female). Dorsal view of idiosoma.

Fig. 24. Tyrophagus curvipenis Fain \& Fauvel, 1993 (female). Ventral view of idiosoma.

Fig. 25. Tyrophagus curvipenis Fain \& Fauvel, 1993 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, prodorsal shield; F, copulatory opening and spermatheca; G, copulatory opening and folded spermatheca.

Fig. 26. Tyrophagus curvipenis Fain \& Fauvel, 1993 (female). A, coxae I-IV; B, genital opening; C, anus; D, solenidia, famulus, and seta of tarsus I; E, solenidion of tarsus II; F, ventral view of distal part of tarsus IV.

D

Fig. 27. Tyrophagus curvipenis Fain \& Fauvel, 1993 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 28. Tyrophagus curvipenis Fain \& Fauvel, 1993 (male). Dorsal view of idiosoma.

Fig. 29. Tyrophagus curvipenis Fain \& Fauvel, 1993 (male). Ventral view of idiosoma.

Fig. 30. Tyrophagus curvipenis Fain \& Fauvel, 1993 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, supracoxal seta; E, prodorsal shield; F, aedeagus and genital papillae; G, aedeagus; H, aedeagus.

Fig. 31. Tyrophagus curvipenis Fain \& Fauvel, 1993 (male). A, coxae I-IV; B, aedeagus and anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II; E, solenidia and famulus of tarsus I; F, solenidion of tarsus II; G, tarsus IV.

Fig. 32. Tyrophagus curvipenis Fain \& Fauvel, 1993 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 33. Tyrophagus longior (Gervais, 1844) (female). Dorsal view of idiosoma.

Fig. 34. Tyrophagus longior (Gervais, 1844) (female). Ventral view of idiosoma.

Fig. 35. Tyrophagus longior (Gervais, 1844) (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, prodorsal shield; E, genital opening; F, copulatory opening and spermatheca; G, copulatory opening and spermatheca.

Fig. 36. Tyrophagus longior (Gervais, 1844) (female). A, coxae I-IV; B, anus; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II.

Fig. 37. Tyrophagus longior (Gervais, 1844) (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 38. Tyrophagus longior (Gervais, 1844) (male). Dorsal view of idiosoma.

Fig. 39. Tyrophagus longior (Gervais, 1844) (male). Ventral view of idiosoma.

Fig. 40. Tyrophagus longior (Gervais, 1844) (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, prodorsal shield; E, lateral view of aedeagus.

Fig. 41. Tyrophagus longior (Gervais, 1844) (male). A, coxae I-IV; B, genital opening and anus; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II.

Fig. 42. Tyrophagus Iongior (Gervais, 1844) (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 43. Tyrophagus macfarlanei sp. n. (female). Dorsal view of idiosoma.

Fig. 44. Tyrophagus macfarlanei sp. n. (female). Ventral view of idiosoma.

Fig. 45. Tyrophagus macfarlanei sp. n. (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, prodorsal shield; F, genital opening; G, copulatory opening and spermatheca.

Fig. 46. Tyrophagus macfarlanei sp. n. (female). A, coxae I-IV; B, anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II; E, distal part of tarsus I; F, distal part of tarsus II.

Fig. 47. Tyrophagus macfarlanei sp. n. (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 48. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (female). Dorsal view of idiosoma.

Fig. 49. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (female). Ventral view of idiosoma.

Fig. 50. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, supracoxal seta; E, prodorsal shield; F, copulatory opening and spermatheca; G, copulatory opening and spermatheca.

Fig. 51. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (female). A, coxae I-IV; B, genital opening; C, anus; D, solenidia and famulus of tarsus I; E, solenidion of tarsus II.

Fig. 52. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 53. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (male). Dorsal view of idiosoma.

Fig. 54. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (male). Ventral view of idiosoma.

Fig. 55. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, supracoxal seta; G, prodorsal shield; H, anus; I, ventral view of aedeagus; J, lateral view of aedeagus; K, aedeagus and genital papillae.

Fig. 56. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (male). A, coxae I-IV; B, coxa II; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II; E, solenidia and famulus of tarsus I; F, solenidion of tarsus II; G, tarsus IV.

Fig. 57. Tyrophagus neiswanderi Johnson \& Bruce, 1965 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 58. Tyrophagus putrescentiae (Schrank, 1781) (female). Dorsal view of idiosoma.

Fig. 59. Tyrophagus putrescentiae (Schrank, 1781) (female). Ventral view of idiosoma.

Fig. 61. Tyrophagus putrescentiae (Schrank, 1781) (female). A, coxae I-IV; B, copulatory opening and spermatheca; C, copulatory opening and spermatheca; D, solenidia and famulus of tarsus I; E, solenidion of tarsus II; F, ventral view of distal part of tarsus IV.

B

c

D

Fig. 62. Tyrophagus putrescentiae (Schrank, 1781) (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 63. Tyrophagus putrescentiae (Schrank, 1781) (male). Dorsal view of idiosoma.

Fig. 64. Tyrophagus putrescentiae (Schrank, 1781) (male). Ventral view of idiosoma.

Fig. 66. Tyrophagus putrescentiae (Schrank, 1781) (male). A, coxae I-IV; B, genital opening and anus; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II; E, solenidia, famulus, and seta of tarsus I; F, solenidion of tarsus II; G, solenidia and famulus of tarsus I; H, solenidion of tarsus II; I, lateral view of tarsus IV; J, lateral view of tarsus IV; K, lateral view of tarsus IV.

Fig. 67. Tyrophagus putrescentiae (Schrank, 1781) (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 68. Tyrophagus robertsonae Lynch, 1989 (female). Dorsal view of idiosoma.

Fig. 69. Tyrophagus robertsonae Lynch, 1989 (female). Ventral view of idiosoma.

Fig. 70. Tyrophagus robertsonae Lynch, 1989 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, prodorsal shield; D, supracoxal seta; E, supracoxal seta; F, genital opening; G, copulatory opening and spermatheca; H, copulatory opening and base of spermatheca.

Fig. 71. Tyrophagus robertsonae Lynch, 1989 (female). A, coxae I-IV; B, anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II.

Fig. 72. Tyrophagus robertsonae Lynch, 1989 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 73. Tyrophagus robertsonae Lynch, 1989 (male). Dorsal view of idiosoma.

Fig. 74. Tyrophagus robertsonae Lynch, 1989 (male). Ventral view of idiosoma.
A

$20 \mu \mathrm{~m} 20 \mu \mathrm{~m}$
1
A, B, D

Fig. 75. Tyrophagus robertsonae Lynch, 1989 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, prodorsal shield; E, genital opening and aedeagus; F, genital opening, aedeagus, and genital papillae.

Fig. 76. Tyrophagus robertsonae Lynch, 1989 (male). A, coxae I-IV; B, genital opening and anus; C, solenidia, famulus and seta of tarsus I; D, solenidion of tarsus II; E, lateral view of tarsus IV.

Fig. 77. Tyrophagus robertsonae Lynch, 1989 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 78. Tyrophagus savasi Lynch, 1989 (female). Dorsal view of idiosoma.

Fig. 79. Tyrophagus savasi Lynch, 1989 (female). Ventral view of idiosoma.

Fig. 80. Tyrophagus savasi Lynch, 1989 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, prodorsal shield; E, copulatory opening and spermatheca.

Fig. 81. Tyrophagus savasi Lynch, 1989 (female). A, coxae I-IV; B, genital opening; C, anus; D, solenidia, famulus, and seta of tarsus I; E, solenidion of tarsus II.

Fig. 82. Tyrophagus savasi Lynch, 1989 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 83. Tyrophagus savasi Lynch, 1989 (male). Dorsal view of idiosoma.

Fig. 84. Tyrophagus savasi Lynch, 1989 (male). Ventral view of idiosoma.

Fig. 85. Tyrophagus savasi Lynch, 1989 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, prodorsal shield; G, ventral view of aedeagus; H , lateral view of aedeagus.

Fig. 86. Tyrophagus savasiLynch, 1989 (male). A, coxae I-IV; B, genital opening and anus; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II.

Fig. 87. Tyrophagus savasi Lynch, 1989 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 88. Tyrophagus similis Volgin, 1949 (female). Dorsal view of idiosoma.

Fig. 89. Tyrophagus similis Volgin, 1949 (female). Ventral view of idiosoma.

Fig. 90. Tyrophagus similis Volgin, 1949 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, prodorsal shield; E, genital opening; F, anus.

Fig. 91. Tyrophagus similis Volgin, 1949 (female). A, coxae I-IV; B, copulatory opening and spermatheca; C, copulatory opening and folded spermatheca; D, solenidia and famulus of tarsus I; E, solenidion of tarsus II; F, solenidia, famulus, and seta of tarsus I; G, solenidion of tarsus II.

Fig. 92. Tyrophagus similis Volgin, 1949 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 93. Tyrophagus similis Volgin, 1949 (male). Dorsal view of idiosoma.

Fig. 94. Tyrophagus similis Volgin, 1949 (male). Ventral view of idiosoma.

Fig. 95. Tyrophagus similis Volgin, 1949 (male). A, ventral view of chelicera; B, detail view of cheliceral digits; C, ventral view of subcapitulum; D, lateral sclerite and supracoxal seta; E, prodorsal shield and supracoxal seta; F, genital papilla; G, lateral view of aedeagus; H, lateral view of aedeagus.

Fig. 96. Tyrophagus similis Volgin, 1949 (male). A, coxae I-IV; B, genital opening and anus; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II.

Fig. 97. Tyrophagus similis Volgin, 1949 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 98. Tyrophagus similis Volgin, 1949. A, newly formed egg; B, partially developed egg; C, fully developed egg.

Fig. 99. Tyrophagus vanheurni Oudemans, 1924 (female). Dorsal view of idiosoma.

Fig. 100. Tyrophagus vanheurni Oudemans, 1924 (female). Ventral view of idiosoma.

Fig. 101. Tyrophagus vanheurni Oudemans, 1924 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, prodorsal shield; G, copulatory opening and spermatheca; H, copulatory opening and spermatheca.

Fig. 102. Tyrophagus vanheurni Oudemans, 1924 (female). A, coxae I-IV; B, genital opening; C, anus; D, solenidia, famulus, and seta of tarsus I; E, solenidion of tarsus II; F, latero-ventral view of distal part of tarsus I; G, ventral view of distal part of tarsus IV.

Fig. 103. Tyrophagus vanheurni Oudemans, 1924 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 104. Tyrophagus vanheurni Oudemans, 1924 (male). Dorsal view of idiosoma.

Fig. 105. Tyrophagus vanheurni Oudemans, 1924 (male). Ventral view of idiosoma.

Fig. 106. Tyrophagus vanheurni Oudemans, 1924 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, prodorsal shield; E, lateral view of aedeagus and anus; F, lateral view of aedeagus and anus; G, ventral view of aedeagus; H, lateral view of aedeagus; I, lateral view of aedeagus.

A, B

Fig. 107. Tyrophagus vanheurni Oudemans, 1924 (male). A, coxae I-IV; B, genital opening and anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II; E, solenidia and famulus of tarsus I; F, solenidion of tarsus II.

Fig. 108. Tyrophagus vanheurni Oudemans, 1924 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 109. Tyrophagus australasiae (Oudemans, 1916) (male, P6921). Dorsal view of idiosoma.

Fig. 110. Tyrophagus australasiae (Oudemans, 1916) (male, P6921). Ventral view of idiosoma.

Fig. 111. Tyrophagus australasiae (Oudemans, 1916) (male, P6921). A, ventral view of chelicera; B, ventral view of subcapitulum; C, prodorsal shield; D, supracoxal seta; E, supracoxal seta; F, genital opening and anus; G, ventral view of aedeagus.

Fig. 112. Tyrophagus australasiae (Oudemans, 1916) (male, P6921). A, coxae I-IV; B, solenidia, famulus, and seta of tarsus I; C, solenidion of tarsus II; D, lateral view of tarsus IV.

Fig. 113. Tyrophagus australasiae (Oudemans, 1916) (male, P6921). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 114. Tyrophagus australasiae (Oudemans, 1916) (male, P6910). Dorsal view of idiosoma.

Fig. 115. Tyrophagus australasiae (Oudemans, 1916) (male, P6910). Ventral view of idiosoma.

Fig. 116. Tyrophagus australasiae (Oudemans, 1916) (male, P6910). A, ventral view of chelicera; B, ventral view of subcapitulum; C, prodorsal shield; D, Grandjean's organ; E, supracoxal seta; F, supracoxal seta; G, coxa II; H, ventral view of aedeagus; I, lateral view of aedeagus; J, lateral view of aedeagus.

Fig. 117. Tyrophagus australasiae (Oudemans, 1916) (male, P6910). A, genital opening and anus; B, solenidia, famulus, and seta of tarsus I; C, solenidion of tarsus II; D, latral view of tarsus IV.

Fig. 118. Tyrophagus australasiae (Oudemans, 1916) (male, P6910). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 119. Tyrophagus javensis (Oudemans, 1916) (female). Dorsal view of idiosoma.

Fig. 120. Tyrophagus javensis (Oudemans, 1916) (female). Ventral view of idiosoma.

Fig. 121. Tyrophagus javensis (Oudemans, 1916) (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, prodorsal shield; G, genital opening; H , anus.

Fig. 122. Tyrophagus javensis (Oudemans, 1916) (female). A, coxae I-IV; B, copulatory opening and spermatheca; C, copulatory opening and spermatheca; D, copulatory opening and spermatheca; E, solenidia, famulus, and seta of tarsus I; F, omega I of tarsus I; G, solenidion of tarsus II.

Fig. 123. Tyrophagus javensis (Oudemans, 1916) (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 124. Tyrophagus javensis (Oudemans, 1916) (male). Dorsal view of idiosoma.

Fig. 125. Tyrophagus javensis (Oudemans, 1916) (male). Ventral view of idiosoma.

Fig. 126. Tyrophagus javensis (Oudemans, 1916) (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, lateral sclerite and supracoxal seta; D, prodorsal shield; E, lateral view of aedeagus.

Fig. 127. Tyrophagus javensis (Oudemans, 1916) (male). A, coxae I-IV; B, genital opening and anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II.

Fig. 128. Tyrophagus javensis (Oudemans, 1916) (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 129. Tyrophagus pacificus sp. n. (female). Dorsal view of idiosoma.

Fig. 130. Tyrophagus pacificus sp. n. (female). Ventral view of idiosoma.

Fig. 131. Tyrophagus pacificus sp. n. (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, supracoxal seta; F, prodorsal shield; G, copulatory opening and spermatheca; H, copulatory opening and spermatheca.

Fig. 132. Tyrophagus pacificus sp. n. (female). A, coxae I-IV; B, anus; C, solenidia and famulus of tarsus I; D, solenidion of tarsus II; E, ventral view of distal part of tarsus IV.

Fig. 133. Tyrophagus pacificus sp. n. (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 134. Tyrophagus pacificus sp. n. (male). Dorsal view of idiosoma.

Fig. 135. Tyrophagus pacificus sp. n. (male). Ventral view of idiosoma.

Fig. 136. Tyrophagus pacificus sp. n. (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, prodorsal shield; E, lateral view of aedeagus; F, aedeagus and anus.

Fig. 137. Tyrophagus pacificus sp. n. (male). A, coxae I-IV; B, solenidia and famulus of tarsus I; C, solenidion of tarsus II.

Fig. 138. Tyrophagus pacificus sp. n. (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 139. Tyrophagus perniciosus Zakhvatkin, 1941 (female). Dorsal view of idiosoma.

Fig. 140. Tyrophagus perniciosus Zakhvatkin, 1941 (female). Ventral view of idiosoma.

Fig. 141. Tyrophagus perniciosus Zakhvatkin, 1941 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, prodorsal shield; F, genital opening; G, anus.

Fig. 142. Tyrophagus perniciosus Zakhvatkin, 1941 (female). A, coxae I-IV; B, copulatory opening and spermatheca; C, copulatory opening and folded spermatheca; D, solenidia, famulus, and seta of tarsus I; E, solenidion of tarsus II.

Fig. 143. Tyrophagus perniciosus Zakhvatkin, 1941 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 144. Tyrophagus perniciosus Zakhvatkin, 1941 (male). Dorsal view of idiosoma.

Fig. 145. Tyrophagus perniciosus Zakhvatkin, 1941 (male). Ventral view of idiosoma.

Fig. 146. Tyrophagus perniciosus Zakhvatkin, 1941 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, supracoxal seta; E, prodorsal shield; F, ventral view of aedeagus; G , lateral view of aedeagus.

Fig. 147. Tyrophagus perniciosus Zakhvatkin, 1941 (male). A, coxae I-IV; B, genital opening and anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II.

Fig. 148. Tyrophagus perniciosus Zakhvatkin, 1941 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 149. Tyrophagus tropicus Robertson, 1959 (female). Dorsal view of idiosoma.

Fig. 150. Tyrophagus tropicus Robertson, 1959 (female). Ventral view of idiosoma.

Fig. 151. Tyrophagus tropicus Robertson, 1959 (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, genital opening; E, prodorsal shield; F, anus; G, anus.

Fig. 152. Tyrophagus tropicus Robertson, 1959 (female). A, coxae I-IV; B, copulatory opening and folded spermatheca; C, copulatory opening and folded spermatheca; D, copulatory opening and spermatheca; E, solenidia, famulus, and seta of tarsus I; F, solenidion of tarsus II.

Fig. 153. Tyrophagus tropicus Robertson, 1959 (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 154. Tyrophagus tropicus Robertson, 1959 (male). Dorsal view of idiosoma.

Fig. 155. Tyrophagus tropicus Robertson, 1959 (male). Ventral view of idiosoma.

Fig. 156. Tyrophagus tropicus Robertson, 1959 (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, supracoxal seta; D, prodorsal shield; E, aedeagus and anus; F, ventral view of aedeagus; G , lateral view of aedeagus.

Fig. 157. Tyrophagus tropicus Robertson, 1959 (male). A, coxae I-IV; B, solenidia and famulus of tarsus I; C, solenidion of tarsus II.

Fig. 158. Tyrophagus tropicus Robertson, 1959 (male). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 159. Tyrophagus womersleyi sp. n. (female). Dorsal view of idiosoma.

Fig. 160. Tyrophagus womersleyi sp. n. (female). Ventral view of idiosoma.

Fig. 161. Tyrophagus womersleyisp. n. (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, Grandjean's organ; D, prodorsal shield; E, supracoxal seta; F, genital opening; G, copulatory opening and spermatheca; H, copulatory opening and spermatheca.

Fig. 162. Tyrophagus womersleyi sp. n. (female). A, coxae I-IV; B, anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II; E, tarsus IV.

B

Fig. 163. Tyrophagus womersleyi sp. n. (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 164. Tyrophagus xenoductus sp. n. (female). Dorsal view of idiosoma.

Fig. 165. Tyrophagus xenoductus sp. n. (female). Ventral view of idiosoma.

Fig. 166. Tyrophagus xenoductus sp. n. (female). A, ventral view of chelicera; B, ventral view of subcapitulum; C, prodorsal shield; D, Grandjean's organ; E, supracoxal seta; F, genital opening; G, copulatory opening and spermatheca.

Fig. 167. Tyrophagus xenoductus sp. n. (female). A, coxae I-IV; B, anus; C, solenidia, famulus, and seta of tarsus I; D, solenidion of tarsus II; E, tarsus IV.

Fig. 168. Tyrophagus xenoductus sp. n. (female). A, leg I; B, leg II; C, leg III; D, leg IV.

Fig. 169. Tyrophagus xenoductus sp. n. (male). Dorsal view of idiosoma.

Fig. 170. Tyrophagus xenoductus sp. n. (male). Ventral view of idiosoma.

Fig. 171. Tyrophagus xenoductus sp. n. (male). A, ventral view of chelicera; B, ventral view of subcapitulum; C, prodorsal shield; D, Grandjean's organ; E, supracoxal seta; F, ventral view of aedeagus and genital papillae; G, lateral view of aedeagus.

Fig. 172. Tyrophagus xenoductus sp. n. (male). A, coxae I-IV; B, genital opening and anus; C, coxal plate II; D, solenidia, famulus, and seta of tarsus I; E, solenidion of tarsus II; F, tarsus IV.

Fig. 173. Tyrophagus xenoductus sp. n. (male). A, leg I; B, leg II; C, leg III; D, leg IV.

PLATE 1. Prodorsal shield (female). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. macfarlanei sp. n.

PLATE 2. Prodorsal shield (female). A, Tyrophagus neiswanderi Johnston \& Bruce; B, T. putrescentiae (Schrank); C, T. robertsonae Lynch; D, T. savasi Lynch.

PLATE 3. Prodorsal shield (female). A, Tyrophagus similis Volgin; B, T. vanheurni Oudemans; C, T. javensis (Oudemans); D, T. pacificus sp. n.

PLATE 4. Prodorsal shield (female). A, Tyrophagus perniciosus Zakhvatkin; B, T. tropicus Robertson; C, T. womersleyisp. n.; D, T. xenoductus sp. n.

PLATE 5. Supracoxal seta (female). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. macfarlanei sp. n.; E, T. neiswanderi Johnston \& Bruce; F, T. putrescentiae (Schrank); G, T. robertsonae Lynch; H, T. savasi Lynch; I, T. similis Volgin; J, T. vanheurni Oudemans; K, T. javensis (Oudemans); L, T. pacificus sp. n.; M, T. perniciosus Zakhvatkin; N, T. tropicus Robertson; O, T. womersleyi sp. n.; P, T. xenoductus sp. n.

PLATE 6. Coxae I-II (female). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. macfarlanei sp. n.

PLATE 7. Coxae I-II (female). A, Tyrophagus neiswanderi Johnston \& Bruce; B, T. putrescentiae (Schrank); C, T. robertsonae Lynch; D, T. savasi Lynch.

PLATE 8. Coxae I-II (female). A, Tyrophagus similis Volgin; B, T. vanheurni Oudemans; C, T. javensis (Oudemans); D, T. pacificus sp. n..

PLATE 9. Coxae I-II (female). A, Tyrophagus perniciosus Zakhvatkin; B, T. tropicus Robertson; C, T. womersleyi sp. n.; D, T. xenoductus sp. n.

PLATE 10. Spermatheca (female). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. macfarlanei sp. n.

PLATE 11. Spermatheca (female). A, Tyrophagus neiswanderi Johnston \& Bruce; B, T. putrescentiae (Schrank); C, T. robertsonae Lynch; D, T. savasi Lynch.

PLATE 12. Spermatheca (female). A, Tyrophagus similis Volgin; B, T. vanheurni Oudemans; C, T. javensis (Oudemans); D, T. pacificus sp. n..

PLATE 13. Spermatheca (female). A, Tyrophagus perniciosus Zakhvatkin; B, T. tropicus Robertson; C, T. womersleyisp. n.; D, T. xenoductus sp. n.

PLATE 14. Solenidion ω_{1} on tarsus I (female). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. Iongior (Gervais); D, T. macfarlanei sp. n.; E, T. neiswanderi Johnston \& Bruce; F, T. putrescentiae (Schrank); G, T. robertsonae Lynch; H, T. savasi Lynch; I, T. similis Volgin; J, T. vanheurni Oudemans; K, T. javensis (Oudemans); L, T. pacificus sp. n.; M, T. perniciosus Zakhvatkin; N, T. tropicus Robertson; O, T. womersleyisp. n.; P, T. xenoductus sp.n.

PLATE 15. Solenidion ω on tarsus II (female). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. Iongior (Gervais); D, T. macfarlanei sp. n.; E, T. neiswanderi Johnston \& Bruce; F, T. putrescentiae (Schrank); G, T. robertsonae Lynch; H, T. savasi Lynch; I, T. similis Volgin; J, T. vanheurni Oudemans; K, T. javensis (Oudemans); L, T. pacificus sp. n.; M, T. perniciosus Zakhvatkin; N, T. tropicus Robertson; O, T. womersleyisp. n.; P, T. xenoductus sp. n.

PLATE 16. Prodorsal shield (male). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. neiswanderi Johnston \& Bruce.

PLATE 17. Prodorsal shield (male). A, Tyrophagus putrescentiae (Schrank); B, T. robertsonae Lynch; C, T. savasi Lynch; D, T. similis Volgin.

PLATE 18. Prodorsal shield (male). A, Tyrophagus vanheurni Oudemans; B, T. australasiae (Oudemans); C, T. javensis (Oudemans); D, T. pacificus sp. n.

PLATE 19. Prodorsal shield (male). A, Tyrophagus perniciosus Zakhvatkin; B, T. tropicus Robertson; C, T. xenoductus sp. \mathbf{n}.

PLATE 20. Supracoxal seta (male). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. neiswanderi Johnston \& Bruce; E, T. putrescentiae (Schrank); F, T. robertsonae Lynch; G T. savasi Lynch; H, T. similis Volgin; I, T. vanheurni Oudemans; J, T. australasiae (Oudemans); K, T. javensis (Oudemans); L, T. pacificus sp. n.; M, T. perniciosus Zakhvatkin; N, T. tropicus Robertson; O, T. xenoductus sp. n.

PLATE 21. Coxae I-II (male). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. neiswanderi Johnston \& Bruce.

PLATE 22. Coxae I-II (male). A, Tyrophagus putrescentiae (Schrank); B, T. robertsonae Lynch; C, T. savasi Lynch; D, T. similis Volgin.

PLATE 23. Coxae I-II (male). A, Tyrophagus vanheurni Oudemans; B, T. australasiae (Oudemans); C, T. javensis (Oudemans); D, T. pacificus sp. n.

PLATE 24. Coxae I-II (male). A, Tyrophagus perniciosus Zakhvatkin; B, T. tropicus Robertson; C, T. xenoductus sp.n.

PLATE 25. Aedeagus (male). A, Tyrophagus communis sp. n. (ventral view); B, T. communis sp. n. (lateral view); C, T. curvipenis Fain \& Fauvel (ventral view); D, T. curvipenis Fain \& Fauvel (lateral view); E, T. longior (Gervais) (ventral view); F, T. longior (Gervais) (lateral view).

PLATE 26. Aedeagus (male). A, Tyrophagus neiswanderi Johnston \& Bruce (ventral view); B, T. neiswanderi Johnston \& Bruce (lateral view); C, T. putrescentiae (Schrank) (ventral view); D, T. putrescentiae (Schrank) (lateral view); E, T. robertsonae Lynch (lateral view); F, T. robertsonae Lynch (lateral view).

PLATE 27. Aedeagus (male). A, Tyrophagus savasi Lynch (ventral view); B, T. savasi Lynch (lateral view); C, T. similis Volgin (lateral view); D, T. vanheurni Oudemans (lateral view); E, T. australasiae (Oudemans) (ventral view, P6921); F, T. australasiae (Oudemans) (lateral view, P6910).

PLATE 28. Aedeagus (male). A, Tyrophagus javensis (Oudemans) (ventral view); B, T. javensis (Oudemans) (lateral view); C, T. pacificus sp. n. (lateral view); D, T. pacificus sp. n. (lateral view); E, T. perniciosus Zakhvatkin (ventral view); F, T. perniciosus Zakhvatkin (lateral view).

PLATE 29. Aedeagus (male). A, Tyrophagus tropicus Robertson (ventral view); B, T. tropicus Robertson (lateral view); C, T. xenoductus sp. n. (ventral view); D, T. xenoductus $\mathbf{s p} . \mathbf{n}$ (lateral view).

PLATE 30. Solenidion ω_{1} on tarsus I (male). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. Iongior(Gervais); D, T. neiswanderi Johnston \& Bruce; E, T. putrescentiae (Schrank); F, T. robertsonae Lynch; G, T. savasi Lynch; H, T. similis Volgin; I, T. vanheurni Oudemans; J, T. australasiae (Oudemans); K, T. javensis (Oudemans); L, T. pacificus sp. n.; M, T. perniciosus Zakhvatkin; N, T. tropicus Robertson; O, T. xenoductus sp. n.

PLATE 31. Solenidion ω on tarsus II (male). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. Iongior (Gervais); D, T. neiswanderi Johnston \& Bruce; E, T. putrescentiae (Schrank); F, T. robertsonae Lynch; G, T. savasi Lynch; H, T. similis Volgin; I, T. vanheurni Oudemans; J, T. australasiae (Oudemans); K, T. javensis (Oudemans); L, T. pacificus sp. n.; M, T. perniciosus Zakhvatkin; N, T. tropicus Robertson; O, T. xenoductus sp. n.

PLATE 32. Tarsus IV (male). A, Tyrophagus communis sp. n.; B, T. curvipenis Fain \& Fauvel; C, T. longior (Gervais); D, T. neiswanderi Johnston \& Bruce.

PLATE 33. Tarsus IV (male). A, Tyrophagus putrescentiae (Schrank); B, T. robertsonae Lynch; C, T. savasi Lynch; D, T. similis Volgin.

PLATE 34. Tarsus IV (male). A, Tyrophagus vanheurni Oudemans; B, T. australasiae (Oudemans); C, T. javensis (Oudemans); D, T. pacificus sp. n.

PLATE 35. Tarsus IV (male). A, Tyrophagus perniciosus Zakhvatkin; B, T. tropicus Robertson; C, T. xenoductus sp. n.

Species distribution maps according to area codes of Crosby et al. (1976, 1998); detailed locality information in appendix 1 .

TAXONOMIC INDEX

This index covers the nominal taxa mentioned in the text, regardless of their current status in taxonomy. In the case of synonyms, the combinations of generic and specific names listed are those originally published by authors, and may differ from combinations implicit in current usage. Taxa in bold indicate valid taxa. Page numbers in bold indicate the entries of the descriptions. The letters "kf" or "km" after a page indicate the page of the key to the female or male. The letter " f " after a page indicates a figure. The letter " p " after a page indicates a plate. The letter " m " indicates a distribution map. The Figures, Plates and Distributional maps are on the following pages: Figures, pages 69-241; Plates, pages 242-276; Distribution maps, page 277.

Acaridae 9, 10, 62, 63, 66
Acarus dimidiatus 24
Acarus putrescentiae 13, 30
africanus, Tyrophagus 9, 27, 29, 63
Astigmata 9, 10
australasiae, Tyroglyphus 21, 40, 44, 67
australasiae, Tyrophagus 9, 16, 17km, 21, 40, 42, 44, 67, 177-186f, 259p, 261p, 264p, 268p, 271p, 272p, 275p, 277m

Coelognathus 13
Coelognathus dimidiatus 26
Coelognathus tenuiclavus 26
communis, Tyrophagus 9, 11, 16kf, 17km, 18, 21, 22, 24, 32, 41, 42, 57, 61-64, 6668, 69-90f, 242p, 246p, 247p, 251p, 255-257p, 261p, 262p, 266p, 271273p, 277m
curvipenis, Tyrophagus 9, 15kf, 17km, 22, 24, 46, 51, 57, 58, 61-63, 65, 91-100f, 242p, 246p, 247p, 251p, 255-257p, 261p, 262p, 266p, 271-273p, 277m
dimidiatus forma dimidiatus, Tyroglyphus 26
dimidiatus forma humerosus, Tyrophagus 26
dimidiatus forma infestans, Tyroglyphus 38
dimidiatus forma longior, Tyroglyphus 26
dimidiatus var. dimidiatus, Tyrophagus 38
dimidiatus var. humerosus, Tyrophagus 26
dimidiatus var. infestans, Tyrophagus 26
dimidiatus var. longior, Tyrophagus 26
dimidiatus, Acarus 24
dimidiatus, Coelognathus 26
dimidiatus, Tyroglyphus 26, 38
dimidiatus, Tyroglyphus subgen. Tyrophagus 26
dimidiatus, Tyrophagus 26, 36, 38
humerosus, Tyrophagus 38
infestans, Tyroglyphus 26
infestans, Tyrophagus 26, 38
javensis, Tyroglyphus 42
javensis, Tyrophagus 9, 15kf, $16,17 \mathrm{~km}, 21,34,40,42,44$, 53, 58, 67, 187-196f, 244p, 246p, 249p, 253p, 255p, 256p, 259p, 261p, 264p, 269p, 271p, 272p, 275p, 277 m
longior, Tyroglyphus 11, 24, 26
longior, Tyrophagus 9, 11, $16 \mathrm{kf}, 17 \mathrm{~km}, 24,26,38,57$, 60-63, 65, 66, 101-110f, 242p, 246p, 247p, 251p, 255-257p, 261p, 262p, 266p, 271-273p, 277m
macfarlanei, Tyrophagus 9, 15kf, 17, 26, 27, 63, 111115f, 242p, 246p, 247p, 251p, 255p, 256p, 277m
neiswanderi, Tyrophagus 911, 15kf, 16km, 27, 29, 35, 57, 59, 61, 63, 116-125f, 243p, 246p, 248p, 252p, 255-257p, 261p, 262p, 267p, 271-273p, 277m
oudemansi, Tyrophagus 11, 36, 66
pacificus, Tyrophagus 9, 15kf, $17 \mathrm{~km}, 24,44,46,51,53,60$,

68, 197-206f, 244p, 246p, 249p, 253p, 255p, 256p, 259p, 261p, 264p, 269p, 271p, 272p, 275p, 277m
palmarum, Tyrophagus 9, 11, 38, 40
perniciosus, Tyrophagus 9, 10, 16kf, 17km, 46, 48, 68, 207-216f, 245p, 246p, 250p, 254-256p, 260p, 261p, 265p, 269p, 271p, 272p, 276p, 277m
putrescentiae, Acarus 13, 30
putrescentiae, Tyroglyphus 32
putrescentiae, Tyroglyphus (Tyrophagus) 30
putrescentiae, Tyrophagus 9, 11, 16kf, 17km, 18, 21, 22, 24, 30, 31, 32, 40, 58, 64, 126-135f, 243p, 246p, 248p, 252p, 255p, 256p, 258p, 261p, 263p, 267p, 271p, 272p, 274p, 277m
robertsonae, Tyrophagus 9, 15kf, 16km, 32, 34, 44, 53, 65, 136-145f, 243p, 246p, 248p, 252p, 255p, 256p, 258p, 261p, 263p, 267p, 271p, 272p, 274p, 277m
savasi, Tyrophagus 9, 15kf, 16km, 34, 35, 62, 65, 66, 146-155f, 243p, 246p, 248p, 252p, 255p, 256p, 258p, 261p, 263p, 268p, 271p, 272p, 274p, 277m
similis, Tyrophagus 9-11, $16 \mathrm{kf}, 17 \mathrm{~km}, 36,38,58,61-$ 63, 65, 156-166f, 244p, 246p, 249p, 253p, 255p, 256p, 258p, 261p, 263p, 268p, 271p, 272p, 274p, 277 m
tenuiclavus, Coelognathus 26
tenuiclavus, Tyrophagus 24, 26
tropicus, Tyrophagus 9, 15kf, 16km, 27, 48, 58-60, 68, 217-226f, 245p, 246p, 250p, 254-256p, 260p, 261p, 265p, 270-272p, 276p, 277m
Tyroglyphus (Tyrophagus) putrescentiae 30
Tyroglyphus australasiae 21, 40, 44, 67
Tyroglyphus dimidiatus 26, 38
Tyroglyphus dimidiatus forma dimidiatus 26
Tyroglyphus dimidiatus forma infestans 38
Tyroglyphus dimidiatus forma longior 26
Tyroglyphus infestans 26
Tyroglyphus javensis 42
Tyroglyphus longior 11, 24, 26
Tyroglyphus putrescentiae 32
Tyroglyphus subgen. Tyrophagus dimidiatus 26
Tyrophagus 9, 10, 13, 14-16, 40
Tyrophagus africanus 9, 27, 29, 63
Tyrophagus australasiae 9, 16, 17km, 21, 40, 42, 44, 67, 177-186f, 259p, 261p, 264p, 268p, 271p, 272p, 275p, 277m
Tyrophagus communis 9, 11, 16kf, 17km, 18, 21, 22, 24, 32, 41, 42, 57, 61-64, 6668, 69-90f, 242p, 246p, 247p, 251p, 255-257p, 261p, 262p, 266p, 271273p, 277m
Tyrophagus curvipenis 9, 10, $15 \mathrm{kf}, 17 \mathrm{~km}, 22,24,46,51$, 57, 58, 61-63, 65, 91-100f, 242p, 246p, 247p, 251p, 255-257p, 261p, 262p, 266p, 271-273p, 277m
Tyrophagus dimidiatus 26, 36, 38
Tyrophagus dimidiatus forma humerosus 26
Tyrophagus dimidiatus var. dimidiatus 38
Tyrophagus dimidiatus var. humerosus 26
Tyrophagus dimidiatus var. infestans 26

Tyrophagus dimidiatus var. longior 26
Tyrophagus humerosus 38
Tyrophagus infestans 26, 38
Tyrophagus javensis 9, 15kf, $16,17 \mathrm{~km}, 21,34,40,42,44$, 53, 58, 67, 187-196f, 244p, 246p, 249p, 253p, 255p, 256p, 259p, 261p, 264p, 269p, 271p, 272p, 275p, 277m
Tyrophagus longior 9, 11, 16kf, 17km, 24, 26, 38, 57, 60-63, 65, 66, 101-110f, 242p, 246p, 247p, 251p, 255257p, 261p, 262p, 266p, 271-273p, 277m
Tyrophagus macfarlanei 9, 15kf, 17, 26, 27, 63, 111115f, 242p, 246p, 247p, 251p, 255p, 256p, 277m
Tyrophagus neiswanderi 9-11, 15kf, 16km, 27, 29, 35, 57, 59, 61, 63, 116-125f, 243p, 246p, 248p, 252p, 255257p, 261p, 262p, 267p, 271-273p, 277m
Tyrophagus oudemansi 11, 36, 66
Tyrophagus pacificus 9, 15kf, $17 \mathrm{~km}, 24,44,46,51,53,60$, 68, 197-206f, 244p, 246p, 249p, 253p, 255p, 256p, 259p, 261p, 264p, 269p, 271p, 272p, 275p, 277m
Tyrophagus palmarum 9, 11, 38, 40
Tyrophagus perniciosus 9, 10, $16 \mathrm{kf}, 17 \mathrm{~km}, 46,48,68$, 207216f, 245p, 246p, 250p, 254-256p, 260p, 261p, 265p, 269p, 271p, 272p, 276p, 277m
Tyrophagus putrescentiae 9, 11, 16kf, 17km, 18, 21, 22, 24, 30, 31, 32, 40, 58, 64, 126-135f, 234p, 246p, 248p, 252p, 255p, 256p, 258p, 261p, 263p, 267p, 271p, 272p, 274p, 277m
Tyrophagus robertsonae 9, 15kf, 16km, 32, 34, 44, 53, 65, 136-145f, 243p, 246p, 248p, 252p, 255p, 256p, 258p, 261p, 263p, 267p, 271p, 272p, 274p, 277m

Tyrophagus savasi 9, 15kf, $16 \mathrm{~km}, 34,35,62,65,66$, 146-155f, 243p, 246p, 248p, 252p, 255p, 256p, 258p, 261p, 263p, 268p, 271p, 272p, 274p, 277m
Tyrophagus similis 9-11, 16kf, $17 \mathrm{~km}, 36,38,58,61-63,65$, 156-166f, 244p, 246p, 249p, 253p, 255p, 256p, 258p, 261p, 263p, 268p, 271p, 272p, 274p, 277m
Tyrophagus tenuiclavus 24, 26
Tyrophagus tropicus 9, 15kf, 16km, 27, 48, 58-60, 68, 217-226f, 245p, 246p, 250p, 254-256p, 260p, 261p, 265p, 270-272p, 276p, 277m
Tyrophagus vanheurni 9, 11, $16 \mathrm{kf}, 17 \mathrm{~km}, 38,40,50,57$, 62, 64-66, 167-176f, 244p, 246p, 249p, 253p, 255p, 256p, 259p, 261p, 264p, 268p, 271p, 272p, 275p, 277m
Tyrophagus womersleyi 9, 15kf, 17, 50, 51, 68, 227231f, 245p, 246p, 250p, 254-256p, 277m
Tyrophagus xenoductus 9, $15 \mathrm{kf}, 16 \mathrm{~km}, 51,68$, 232241f, 245p, 246p, 250p, 254-256p, 260p, 261p, 265p, 270-272p, 276p, 277m
vanheurni, Tyrophagus 9, 11, 16kf, 17km, 38, 40, 50, 57, 62, 64-66, 167-176f, 244p, 246p, 249p, 253p, 255p, 256p, 259p, 261p, 264p, 268p, 271p, 272p, 275p, 277m
womersleyi, Tyrophagus 9, 15kf, 17, 50, 51, 68, 227231f, 245p, 246p, 250p, 254-256p, 277m
xenoductus, Tyrophagus 9, 15kf, 16km, 51, 68, 232241f, 245p, 246p, 250p, 254-256p, 260p, 261p, 265p, 270-272p, 276p, 277m

INDEX TO HOSTS (habitats)

Acer pseudoplatanus (seeds) 21, 59
agar tissue culture of orchids 21, 58
Allium sativum 26
almond 21, 60
Amaryllidaceae vallarta bulb 29, 64
Amaryllis hippeastrum bulb 29, 64
ant (eggs) 42, 67
ant (workers) 44
Apis cerana indica (hive) 26
Apis dorsata (hive) 26
Apis florae (hive) 26
Apis mellifera (hive) 26
apple 23, 26, 62
apple calyx (Granny Smith) 23, 61
apple (stored) 26
apricot (bark) 23, 61
apricot fruit (mummified) 24, 61
asparagus 21, 57
avocado 26,63
avondale spider (egg cluster) 24, 61
banana 21, 26, 31, 44, 46, 50, $53,59,60,61,63,64,67,68$
banana leaf matting (dust) 21, 58
bark scrapings $21,44,58,67$
barley 23, 26, 61, 62
barn dust 26, 38
bat debris 38, 66
bean plumules 38, 65
beans in kitchen cupboard 21, 57
bee frame 26, 62
bee surveillance $26,61,63,65$, 66
beehive 21, 24, 26, 57
bird cage 48
bird nest 26, 63
bird-of-paradise flower 23, 62
black backed gull colony (nests and debris) 38, 65
black currents 23, 61
Bombus nest 26, 62
budgerigar cage 48,68
buffet 21, 57
Caladium 21, 60
Calolampra 21,58
caper seeds 21,60
capsicum 21, 23, 29, 40, 57,
58, 59, 62, 64, 66

Capsicum frutescens 29, 40, 64, 66
carrot 27, 63
cauliflower seedling 48
Cerbera mallam seeds 46, 68
cereal 48
Ceroplastes destructor (eggs) 24, 61
chaff 21, 58
cheese 21, 26, 32, 35, 40, 57, 60, 62, 63, 65, 66
cheese (Cheshire) 21, 60
cheese (Gouda) 21, 26, 60
cheese ("Kai-iwi" foil wrapped) 21, 57
cheese (Welsh cheddar, in store) 40, 66
cheese shelves 26, 62
cherry bark 23, 61
cherry (foliage) 23, 61
Chinese wax scale 48
Cinclus cinclus aquaticus (nest) 26
Cissus antarctica (seed) 21, 58
citrus 21, 60
Citrus aurantium 31, 65
citrus borer (dead larva) 21, 24, 57, 61
Citrus limon 21, 58
clover (root) 24, 61
coccid scale on Buxus 24, 61
cockroach (colony) 21, 58
cocoa beans 21, 50, 58, 68
coconut $21,26,40,46,59,60$, 61
coconut (decaying) 21, 58
coconut (rotting) 26
Coffea arabica 21, 58
Coleophora (tube) 23, 61
Colocasia esculenta (bulb) 21, 59
combine harvester 26, 63
copra 21, 58, 59
Coprosma lucida 35, 65
corn 21, 29, 59, 64
cracks \& floor 21, 58
crowned pigeon 42, 67
Cryptes baccarum 21, 58
cucumber 10, 26, 29, 38, 63, 64
cucumber (fruits) 29
cucumber (leaves) 21, 23, 26, 57, 61, 62, 63, 64
cucumber (damaging leaves) 26
curry (leaves) 21, 59
cycad palm (seeds) 21, 59
Cymbidium 26, 63, 64
Cymbidium (pollinia) 24, 61

Cymbidium orchid (miniature)
29, 64
Cymbidium orchid flower buds \& leaves 29, 63
Cymbidium pollen caps 29, 64
dahlia 21, 26, 38, 59, 63, 66
debris in collection of Culex
antipodeus 40, 66
debris in container 21, 57
Delichon urbica (nest) 48
Disonycha \& Agasicles beetles 24, 62
dormant (bulb) 21, 60
dust-bed 21, 58
egg plant 21, 59
Egretta alba modesta 38,65
Epiphyllum 29, 64
Eudyptula minor albosignata (nest) 26
Exuneura concinnula (nest) 24, 62
feijoa 21, 57
fig 21, 60
fig (dried) 21, 60
fig (leaves) 26, 63
fish house 21, 57
flower bulb 29, 64
food (dried) 21, 59, 60
food stuffs in household pantry 21, 57
Freesia (bulb) 21, 58, 60
fruit (dried) 21, 50, 59, 68
fruit flies (dead) 40, 66
fungus culture 21, 57
garlic 21, 23, 26, 29, 31, 38, 57, $58,59,60,61,63,64,65$
Geranium 29, 64
gladioli 21, 26, 60, 63
Gladiolus 31, 60, 65
gooseberry bud 29, 64
Goura 42, 67
grain 21, 57, 58
grain (damp) 21, 58
grain (stored) 26
grain horse fodder (mixed) 21, 58
grain products 48
grain silo (dust) 21, 58
grape leaves with galls 29, 64
grape vine 29, 63
grapefruit 23, 61
grass seeds $26,62,63$
grassland 26
guava 46,68
ham 26
harvester 26, 63
hay (stored) 26, 38
Heterodera avenae 38
Hibiscus 29, 64
honey 26
honeybee 24, 35, 40
honeybee hive 24,61
house 21, 57, 58
house (glass surface) 21,57
housemartin (nest) 48
house dust 26
house-fly (dead) 40, 66
human 26, 48
human (respiratory tract) 29
human urine 21, 58
humus 31, 32, 64
hyacinth $21,31,58,64$
hydrangea (leaves) 23, 61
Iris (bulb) 21, 58, 60
kangaroo diet 21, 58
kentia palm 21, 58
kitchen in farmhouse 21, 57
kiwi fruit $23,38,61,62$
Lauris nobilis (leaves) 21, 59
lemon 21, 24, 29, 59, 61, 62, 64
Lilium bulb 38, 66
litter in a densely populated urban area 26
Locusta migratoria 21, 58
loquat fruit (mummified) 24, 61
lychee (dried) 21, 50, 59, 68
Macadamia husk (injured, living) 40, 66
maize 10, 38
mallow (leaves) 26, 62
mandarin 24, 26, 62, 63
mango (rotting) 26
mangosteen 34, 65
matua on nutmeg 21,57
mealworm culture 21,58
melon 10, 38, 48
melon seed-beds 38
milk powder (dried) 21, 24, 26, 57, 61, 63
millipede 21, 60
Miomantis caffra (dead eggs \& embryos) 24,61
molactrate molasses blocks 21, 57
Morchella conica 48
Morchella esculenta 48
moss 38,66
mould in hazel nuts 21, 60

Mus musculus 40, 66
Musa sapientum 26, 61, 63, 67
Muscari (bulb) 21, 31, 60, 65
mushrooms 21, 31, 38, 48, 57, 64, 65, 66
mutton bird (burrows \& nests) 31, 64
mycelium of Sporidesmium mucosum var. pluriseptatum on cucumber 48

Narcissus bulbs 21, 29, 31, 35, 38, 58, 60, 64, 65, 66
Nashi (leaves) 24, 61
Nauphota 21, 58
nectarine (bark) 23, 26, 61, 62
nematode culture 38, 65
Nipa palm leaves 21,58
Norway rat 38
oil-producing seeds 48
onion 21, 24, 26, 29, 34, 58, 60, 61, 62, 63, 64, 65
onion (diseased) 29, 63
orange $21,29,31,59,60,61$, 64, 65
orange (calyx end) 21, 59
orchid 21, 29, 31, 38, 59, 60, 61, 63, 64, 65
orchid flower 29, 63, 64
orchid house floor 29, 63
orchid pot 29, 63
Orchidaceae 21,59
ornamentals 26
Orthodera ministralis ootheca 40, 61, 66
Oryctolagus cuniculus 38, 66
Pachyptila turtur (nest) 26
pallet and scraping 21, 24, 26, 57, 61, 63
palm kernel dust 50, 68
palm seeds 21, 31, 58, 59, 60, 61, 64
passalid beetle 21, 60
passion fruit 24, 61
pasture 38, 66
pea (damaged) 26, 62
peanut 21, 60
pepino 29, 63
persimmon 21, 24, 58, 61
Phalaenopsis (flower buds) 29, 63
pimento 21, 60
pine tree seeds 21,58
pineapple $21,44,51,58,67,68$
Plagiolepis longipes 21, 42, 44, 67
plant roots 21,59
Plumeria 21, 60
pollen from hive 21, 40, 57, 66
pollen (stored) 26
Polyconoceris alaskis 21, 60
Polynesian rat 38, 48
pomelo 26, 63
Populus nigra var. italica (galls) 23, 61
potato 21, 60
Prionoplus reticularis (dead)
21, 26, 57, 63
prosciutto in meat works 26, 63
Prunus (leaves) 29, 64
Psocoptera (lab culture) 21,58
Puffinus tenuirostris 31, 64
pumpkin 10, 38, 48
Quercus (acorns) 26, 38, 63, 66
rabbit 21, 38, 58, 66
Ranunculus (bulb) 21, 31, 58, 64
raspberry jam 21, 57
Rattus exulans 24, 38, 40, 61, 66
Rattus exulans (dead) 40, 66
Rattus norvegicus 38, 40, 66
Rattus norvegicus (dead) 24, 40, 61, 66
Rattus rattus 40, 66
red dates 21,59
Rhopoea larva (dead) 38, 65
rice plant 21, 60
rooster feathers "Tintinhull" 21, 58
rose 21, 59
ryegrass seeds 26, 62
saint paulia 21,57
sandy soil in pots of Rama
ryegrass 38,65
scale culture room 29,57, 63
Scirpus tuberosus 21, 59
sea bird (nest) 26, 38
seeds \& spices 21,59
seeds and debris from tent 38, 66
shallot $24,26,62,63$
sheep (scrapie-infected) 26
sheep faeces 21,58
shell fish (dried) 21, 59
shepherd 26, 66
short-tailed bat 40, 66
silverfish culture 21,58
soft wax scale 48
soil $21,34,58,65$
soil (agricultural) 38
soil and dead plant residues 48
soil and plant material 29, 64
Solanum muricatum 29, 63
sorghum (stored) 21, 58
soya bean 21,58
soyabean flour 26
sparrow (nest) 24, 61
sphecids stick-trap 40, 61, 66
spinach $10,38,48,65$
spinach bud 38
spoon from kitchen 21,57
Sporotrichum 21, 58
starling (nest) 48
Stathmopoda (dead larva) 24, 61
stored food products 9, 10, 11, 26
stored grain 26
strawberry 21, 24, 26, 57, 61, 62, 63
straws of rice (rotten) 38
Sturnus vulgaris (nest) 24, 26, 38, 48, 61, 62, 65
sugarbeet field 38
swallow (nest) 24, 61
tamarillo 26
taro 21, 59, 60
tea-tree (scrub) 38, 66
Theobroma cacao 21, 50, 61, 68
Tinca tinca 31, 64
Tineola biselliella 21, 58
tomato 21, 29, 48, 58, 60, 63, 68
tomato chutney 26,62
tree onion (bulb) 24, 62
Tribolium culture 21, 58
tulip (bulb) 21, 31, 58, 59, 64, 65
vanilla bean 21, 59, 60
vegetable leaves (dried) 21, 59
Vespula germanica (nest) 24, 61
Virgilia divaricata 21, 58
water chestnut 21,59
water melon 44, 67
wedding cake 26,62
weed 26
wheat 21, 26, 57, 62
white heron 38, 65
Ya pear 21, 59
Yam 21, 59
Zantedeschia (bulb) 29, 64
Zenarge turneri (larva) 38, 65

LIST OF SPECIES BY HOST

Acer pseudoplatanus (seeds)communis
agar tissue culture of orchidscommunis
Allium sativum-longior
almond-communis
Amaryllidaceae vallarta (bulb)neiswanderi
Amaryllis hippeastrum (bulb)neiswanderi
ant (eggs)-australasiae
ant (workers)-javensis
Apis cerana indica (hive)longior
Apis dorsata (hive)-longior
Apis florae (hive)-longior
Apis mellifera (hive)-longior
apple-curvipenis, longior
apple calyx (Granny Smith) curvipenis
apple (stored)—longior
apricot (bark)—curvipenis
apricot fruit (mummified)curvipenis
asparagus-communis
avocado-longior
avondale spider (egg cluster)curvipenis
banana-communis, longior, putrescentiae, javensis, pacificus, tropicus, xenoductus
banana leaf matting (dust)communis
bark scrapings-communis, javensis
barley-curvipenis, longior
barn dust-longior, similis
bat debris-similis
bean plumules-similis
beans in kitchen cupboardcommunis
bee frame-longior
bee surveillance-longior
beehive-communis, curvipenis, longior
bird cage-perniciosus
bird nest-longior
bird-of-paradise flowercurvipenis
black backed gull colony (nests and debris)-similis
black currents-curvipenis
Bombus (nest)-longior
budgerigar cage—perniciosus
buffet-communis

Caladium-communis
Calolampra-communis
caper (seeds)-communis
capsicum-communis, curvipenis, neiswanderi, vanheurni
Capsicum frutescensneiswanderi, vanheurni
carrot—macfarlanei
cauliflower (seedling)perniciosus
Cerbera mallam (seeds)pacificus
cereal-perniciosus
Ceroplastes destructor (eggs)curvipenis
chaff-communis
cheese-communis, longior, savasi, vanheurni
cheese (Cheshire)-communis
cheese (Gouda)-communis, longior
cheese ("Kai-iwi" foil wrapped)-communis
cheese (Welsh cheddar, in store)-vanheurni
cheese shelves-longior
cherry (bark)—curvipenis
cherry (foliage)—curvipenis
Cinclus cinclus aquaticus (nest)-longior
Chinese wax scale-vanheurni
Cissus antarctica (seed)communis
citrus-communis
Citrus aurantiumputrescentiae
citrus borer (dead larva)communis, curvipenis
Citrus limon-communis
clover (root)—curvipenis
coccid scale on Buxuscurvipenis
cockroach (colony)-communis
cocoa beans-communis, tropicus
coconut-communis, longior, vanheurni, pacificus
coconut (decaying)-communis
coconut (rotting)-longior
Coffea arabica-communis
Coleophora (tube)-curvipenis
Colocasia esculenta (bulb)communis
combine harvester-longior
copra-communis
Coprosma lucida-savasi
corn-communis, neiswanderi
cracks \& floor-communis crowned pigeon-australasiae Cryptes baccarum-communis cucumber-longior, neiswanderi, similis cucumber (fruits)—neiswanderi cucumber (leaves)-communis, curvipenis, longior
cucumber (damaging leaves)longior
curry (leaves)-communis
cycad palm (seeds)-communis
Cymbidium—longior
Cymbidium (pollinia)curvipenis
Cymbidium orchid (mini-ature)-neiswanderi
Cymbidium orchid flower (buds \& leaves)-neiswanderi
Cymbidium pollen capsneiswanderi
dahlia-communis, longior, similis
debris in collection of Culex antipodeus-vanheurni
debris in container-communis
Delichon urbica (nest)perniciosus
Disonycha \& Agasicles bee-tles-curvipenis
dormant (bulb)-communis
dust-bed-communis
egg plant-communis
Egretta alba modesta—similis
Epiphyllum-neiswanderi
Eudyptula minor albosignata (nest)-longior
Exuneura concinnula (nest)curvipenis
feijoa-communis
fig-communis
fig (dried)-communis
fig (leaves)-longior
fish house-communis
flower (bulb)-neiswanderi
food (dried)-communis
food stuffs in household pantry-communis
Freesia (bulb)-communis
fruit (dried)-communis, tropicus
fruit flies (dead)-vanheurni
fungus culture-communis
garlic-communis, curvipenis, longior, neiswanderi, putrescentiae, similis
Geranium-neiswanderi
gladioli-communis, longior
Gladiolus-putrescentiae
gooseberry (bud)—neiswanderi
Goura-australasiae
grain-communis
grain (damp)-communis
grain (stored)-longior
grain horse fodder (mixed)communis
grain products-perniciosus
grain silo (dust)-communis
grape leaves with gallsneiswanderi
grape (vine)—neiswanderi
grapefruit-curvipenis
grass (seeds)-longior
grassland-longior
guava-pacificus
ham—longior
harvester-longior
hay (stored)-longior, similis
Heterodera avenae-similis
Hibiscus-neiswanderi
honey-longior
honeybee-curvipenis, savasi, vanheurni
honeybee hive-curvipenis
house-communis
house (glass surface)communis
housemartin (nest)perniciosus
house (dust)-longior
house-fly (dead)-vanheurni
human-longior, perniciosus
human (respiratory tract)neiswanderi
human urine-communis
humus-putrescentiae
hyacinth-communis, putrescentiae
hydrangea (leaves)—curvipenis
Iris (bulb)—communis
kangaroo diet-communis
kentia palm-communis
kitchen in farmhouse-communis
kiwi fruit-curvipenis, similis
Lauris nobilis (leaves)communis
lemon-communis, curvipenis,
neiswanderi
Lilium (bulb)-similis
litter in a densely populated
urban area-longior
Locusta migratoria-communis
loquat fruit (mummified)curvipenis
lychee (dried)-communis, tropicus

Macadamia husk (injured, living)—vanheurni
maize-similis
mallow (leaves)-longior
mandarin-curvipenis, longior
mango (rotting)-longior
mangosteen-robertsonae
matua on nutmeg-communis
mealworm culture-communis
melon-similis, perniciosus
melon seed-beds-similis
milk powder (dried)-communis, curvipenis, longior
millipede-communis
Miomantis caffra (dead eggs \& embryos)—curvipenis
molactrate molasses blockscommunis
Morchella conica—perniciosus
Morchella esculentaperniciosus
moss-similis
mould in hazel nuts-communis
Mus musculus-vanheurni
Musa sapientum-longior
Muscari (bulb)-communis, putrescentiae
mushrooms-communis, putrescentiae, similis, perniciosus
mutton bird (burrows \& nests)putrescentiae
mycelium of Sporidesmium mucosum var. pluriseptatum on cucumber-perniciosus

Narcissus (bulb)-communis, neiswanderi, putrescentiae, savasi, similis
Nashi (leaves)—curvipenis
Nauphota-communis
nectarine (bark)—curvipenis, longior
nematode culture-similis
Nipa palm (leaves)-communis
Norway rat-similis
oil-producing (seeds)perniciosus
onion-communis, curvipenis, longior, neiswanderi, robertsonae
onion (diseased)—neiswanderi
orange-communis,
neiswanderi, putrescentiae
orange (calyx end)-communis
orchid-communis,
neiswanderi, putrescentiae,
similis
orchid (flower)—neiswanderi
orchid (house floor)neiswanderi
orchid (pot)—neiswanderi
Orchidaceae-communis
ornamentals-longior
Orthodera ministralis (ootheca)-vanheurni
Oryctolagus cuniculus-similis
Pachyptila turtur (nest)—longior pallet and scraping-communis, curvipenis, longior
palm kernel dust-tropicus
palm (seeds)-communis, putrescentiae
passalid beetle-communis
passion fruit-curvipenis
pasture-similis
pea (damaged)—longior
peanut-communis
pepino-neiswanderi
persimmon-communis, curvipenis
Phalaenopsis (flower buds)neiswanderi
pimento-communis
pine tree (seeds)-communis
pineapple-communis, javensis, womersleyi
Plagiolepis longipes-communis, australasiae, javensis
plant (roots)-communis
Plumeria-communis
pollen from hive-communis, vanheurni
pollen (stored)—longior
Polyconoceris alaskis-communis
Polynesian rat—similis, perniciosus
pomelo-longior
Populus nigra var. italica (galls)-curvipenis
potato-communis
Prionoplus reticularis (dead)communis, longior
prosciutto in meat workslongior
Prunus (leaves)—neiswanderi
Psocoptera (lab culture)communis
Puffinus tenuirostrisputrescentiae
pumpkin-similis, perniciosus
Quercus (acorns)—longior, similis
rabbit-communis, similis
Ranunculus (bulb)—communis, putrescentiae
raspberry (jam)—communis
Rattus exulans-curvipenis, similis, vanheurni
Rattus exulans (dead)vanheurni
Rattus norvegicus-similis, vanheurni
Rattus norvegicus (dead)curvipenis, vanheurni
Rattus rattus-vanheurni
red dates-communis
Rhopoea larva (dead)—similis
rice plant-communis
rooster feathers "Tintinhull"communis
rose-communis
ryegrass (seeds)—longior
saint paulia-communis
sandy soil in pots of Rama ryegrass-similis
scale culture roomneiswanderi
Scirpus tuberosus-communis
sea bird (nest)-longior, similis
seeds \& spices-communis
seeds and debris from tentsimilis
shallot-curvipenis, longior
sheep (scrapie-infected)longior
sheep faeces-communis
shell fish (dried)-communis
shepherd—longior
short-tailed bat-vanheurni
silverfish (culture)-communis
soft wax scale-vanheurni
soil-communis, robertsonae
soil (agricultural)—similis
soil and dead plant residuesperniciosus
soil and plant materialneiswanderi
Solanum muricatumneiswanderi
sorghum (stored)—communis
soya bean-communis
soyabean flour-longior
sparrow (nest)-curvipenis
sphecids stick-trap-vanheurni
spinach—similis, perniciosus
spinach (bud)-similis
spoon from kitchen-communis
Sporotrichum-communis
starling (nest)—perniciosus
Stathmopoda (dead larva)curvipenis
stored food products-longior
stored grain-longior
strawberry-communis, curvipenis, longior
straws of rice (rotten)-similis
Sturnus vulgaris (nest)-
curvipenis, longior, similis, perniciosus
sugarbeet field—similis
swallow (nest)—curvipenis
tamarillo-longior
taro-communis
tea-tree (scrub)-similis
Theobroma cacao-communis, tropicus
Tinca tinca-putrescentiae
Tineola biselliella-communis
tomato-communis, neiswanderi, perniciosus
tomato chutney-longior
tree onion (bulb)-curvipenis
Tribolium (culture)-communis
tulip (bulb)-communis, putrescentiae
vanilla bean-communis
vegetable leaves (dried)communis
Vespula germanica (nest)curvipenis
Virgilia divaricata-communis
water chestnut-communis
water melon-javensis
wedding cake-longior
weed-longior
wheat-communis, longior
white heron-similis
Ya pear-communis
yam-communis
Zantedeschia (bulb)— neiswanderi
Zenarge turneri (larva)—similis

LIST OF SPECIES BY DISTRIBUTION

Africa-communis, tropicus Argentina-communis
Australia-communis, curvipenis, javensis, longior, neiswanderi, perniciosus, putrescentiae, similis, vanheurni, womersleyi
Australia (Lord Howe I.)communis
Australia (Norfolk I.)—communis

Belgium—longior, similis
Brazil-communis
Bulgaria—longior, perniciosus
Canada—longior
Chile-communis
China (mainland)-communis, neiswanderi, putrescentiae, tropicus, similis
China (Hong Kong)-communis, tropicus
China (Taiwan)—communis, putrescentiae,
Cook Is-communis, pacificus
Crete-communis
Denmark—longior
Ecuador-communis, javensis, longior, putrescentiae
Egypt-longior
Faroe Is—longior, similis
Fiji-communis, pacificus
France-curvipenis, longior, similis

Germany-communis, longior, neiswanderi, perniciosus, putrescentiae, tropicus, similis
Greece-communis, longior
Iceland-similis
India-communis, longior, tropicus

Indonesia-australasiae, communis, javensis, longior,
Iran-similis
Ireland—longior
Italy-communis, longior, similis

Jamaica-communis
Japan-communis, neiswanderi, perniciosus, putrescentiae, similis

Kazakhstan—perniciosus
Madagascar—communis
Malaysia-tropicus
Malta-communis
Mexico—neiswanderi, similis
Netherlands-communis, longior, neiswanderi, perniciosus, putrescentiae, similis, vanheurni
New Zealand-communis, curvipenis, longior, macfarlanei, neiswanderi, putrescentiae, robertsonae, savasi, similis, vanheurni
Nigeria-tropicus
Niue-pacificus
Panama-javensis
Papua New Guinea-communis
Philippines-communis, javensis, Iongior
Poland-longior, neiswanderi
Portugal-curvipenis
Romania-similis
Russia—perniciosus
Samoa-communis, pacificus, tropicus
Singapore-communis, javensis
Solomon Is-communis
Spain-communis
South Africa—neiswanderi, similis
Sweden—longior, similis
Switzerland-neiswanderi

Thailand-communis, javensis, robertsonae
Tokelau Is-communis
Tonga-communis, pacificus, xenoductus

Turkey-communis, perniciosus
Tuvalu-vanheurni
U.K.-communis, Iongior, neiswanderi, perniciosus, savasi, similis, vanheurni
Uruguay-longior
U.S.A.-communis, longior, neiswanderi, perniciosus, putrescentiae, robertsonae, similis

Vanuatu-communis
West Africa-communis, tropicus

Yemen—similis

Area codes and boundaries used to categorise specimen locality data (atter Crosby et al. 1976)

Base-map for ploting collection localities; this may be photocopied without copyright release

The New Zealand subregion with area codes (from Crosby et al. 1998).

TITLES IN PRINT / PUNA TAITARA TAA

1 Terebrantia (Insecta: Thysanoptera). Laurence A.
Mound \& Annette K. Walker. ISBN 0-477-06687-9, 23
Dec 1982, 120 pp. ... \$29.95

2 Osoriinae (Insecta: Coleoptera: Staphylinidae). H.
Pauline McColl. ISBN 0-477-06688-7, 23 Dec 1982, 96
pp... \$18.60

3 Anthribidae (Insecta: Coleoptera). B.A. Holloway.
ISBN 0-477-06703-4, 23 Dec 1982, 272 pp. $\$ 41.00$

4 Eriophyoidea except Eriophyinae (Arachnida:
Acari). D.C.M. Manson. ISBN 0-477-06745-X, 12 Nov
1984, 144 pp. .. \$29.95

5 Eriophyinae (Arachnida: Acari: Eriophyoidea). D.C.M.
Manson. ISBN 0-477-06746-8, 14 Nov 1984, 128 pp. .
\$29.95
6 Hydraenidae (Insecta: Coleoptera). R.G. Ordish. ISBN 0-477-06747-6, 12 Nov 1984, 64 pp.
$\$ 18.60$
7 Cryptostigmata (Arachnida: Acari) - a concise review. M. Luxton. ISBN 0-477-06762-X, 8 Dec 1985, 112 pp. .. \$29.95
8 Calliphoridae (Insecta: Diptera). James P. Dear. ISBN 0-477-06764-6. 24 Feb 1986, 88 pp. $\$ 18.60$
9 Protura (Insecta). S.L. Tuxen. ISBN 0-477-067654, 24 Feb 1986, 52 pp. \$18.60
10 Tubulifera (Insecta: Thysanoptera). Laurence A. Mound \& Annette K. Walker. ISBN 0-477-06784-0, 22 Sep 1986, 144 pp. \$34.65
11 Pseudococcidae (Insecta: Hemiptera). J.M. Cox. ISBN 0-477-06791-3, 7 Apr 1987, 232 pp. $\$ 49.95$
12 Pompilidae (Insecta: Hymenoptera). A.C. Harris. ISBN 0-477-02501-3, 13 Nov 1987, 160 pp. $\$ 39.95$
13 Encyrtidae (Insecta: Hymenoptera). J.S. Noyes. ISBN 0-477-02517-X, 9 May 1988, 192 pp. $\$ 44.95$
14 Lepidoptera - annotated catalogue, and keys to family-group taxa. J.S. Dugdale. ISBN 0-477-025188, 23 Sep 1988, 264 pp. \$49.95
15 Ambositrinae (Insecta: Hymenoptera: Diapriidae). I.D. Naumann. ISBN 0-477-02535-8, 30 Dec 1988, 168 pp.
$\$ 39.95$
16 Nepticulidae (Insecta: Lepidoptera). Hans Donner \& Christopher Wilkinson. ISBN 0-477-025382, 28 Apr 1989, 92 pp. \$22.95
17 Mymaridae (Insecta: Hymenoptera) - introduction, and review of genera. J.S. Noyes \& E.W. Valentine. ISBN 0-477-02542-0, 28 Apr 1989, 100 pp. ... $\$ 24.95$
18 Chalcidoidea(Insecta: Hymenoptera)- introduction, and review of genera in smaller families. J.S. Noyes \& E.W. Valentine. ISBN 0-477-02545-5, 2 Aug 1989, 96 pp.
\$24.95
19 Mantodea (Insecta), with a review of aspects of functional morphology and biology. G.W. Ramsay. ISBN 0-477-02581-1, 13 Jun 1990, 96 pp.
\$24.95

20 Bibionidae (Insecta: Diptera). Roy A. Harrison. ISBN 0-477-02595-1. 13 Nov 1990, 28 pp. \$14.95
21 Margarodidae (Insecta: Hemiptera). C.F. Morales. ISBN 0-477-02607-9, 27 May 1991, 124 pp. \$34.95
22 Notonemouridae (Insecta: Plecoptera). I.D. McLellan. ISBN 0-477-02518-8, 27 May 1991, 64 pp. \$24.95
23 Sciapodinae, Medeterinae (Insecta: Diptera) with a generic review of the Dolichopodidae.D.J. Bickel. ISBN 0-477-02627-3, 13 Jan 1992, 74 pp. \$27.95
24 Therevidae (Insecta: Diptera). L. Lyneborg. ISBN 0-477-02632-X, 4 Mar 1992, 140 pp.................. \$34.95
25 Cercopidae (Insecta: Homoptera). K. G.A. Hamilton \& C.F. Morales. ISBN 0-477-02636-2, 25 May 1992, 40 pp. \$17.95
26 Tenebrionidae (Insecta: Coleoptera): catalogue of types and keys to taxa. J.C. Watt. ISBN 0-477-026397, 13 Jul 1992, 70 pp \$27.95
27 Antarctoperlinae (Insecta: Plecoptera). I.D. McLellan. ISBN 0-477-01644-8, 18 Feb 1993, 70 pp. .. \$27.95
28 Larvae of Curculionoidea (Insecta: Coleoptera): a systematic overview. Brenda M. May. ISBN 0-478-04505-0, 14 Jun 1993, 226 pp........................ $\$ 55.00$
29 Cryptorhynchinae (Insecta: Coleoptera: Curculionidae). C.H.C. Lyal. ISBN 0-478-04518-2, 2 Dec 1993, 308 pp. $\$ 65.00$
30 Hepialidae (Insecta: Lepidoptera). J.S. Dugdale. ISBN 0-478-04524-7, 1 Mar 1994, 164 pp. \$42.50
31 Talitridae (Crustacea: Amphipoda). K.W. Duncan. ISBN 0-478-04533-6, 7 Oct 1994, 128 pp................. $\$ 36.00$
32 Sphecidae (Insecta: Hymenoptera). A.C. Harris. ISBN 0-478-04534-4, 7 Oct 1994, 112 pp. \$33.50
33 Moranilini (Insecta: Hymenoptera). J.A. Berry. ISBN 0-478-04538-7, 8 May 1995, 82 pp. \$29.95
34 Anthicidae (Insecta: Coleoptera). F.G. Werner \& D.S. Chandler. ISBN 0-478-04547-6, 21 Jun 1995, 64 pp. \$26.50
35 Cydnidae, Acanthosomatidae, and Pentatomidae (Insecta: Heteroptera): systematics, geographical distribution, and bioecology. M.-C. Larivière. ISBN 0-478-09301-2, 23 Nov 1995, 112 pp $\$ 42.50$
36 Leptophlebiidae (Insecta: Ephemeroptera). D.R. Towns \& W.L. Peters. ISBN 0-478-09303-9, 19 Aug 1996, 144 pp. .. $\$ 39.50$
37 Coleoptera: family-group review and keys to identification. J. Klimaszewski \& J.C. Watt. ISBN 0-478-09312-8, 13 Aug 1997, 199 pp............... $\$ 49.50$
38 Naturalised terrestrial Stylommatophora (Mollusca: Gastropoda). G.M. Barker. ISBN 0-478-09322-5, 25 Jan 1999, 253 pp. $\$ 72.50$
39 Molytini (Insecta: Coleoptera: Curculionidae: Molytinae).R.C. Craw. ISBN 0-478-09325-X, 4 Feb1999, 68 pp.$\$ 29.50$
40 Cixiidae (Insecta: Hemiptera: Auchenorrhyncha). M.- C. Larivière. ISBN 0-478-09334-9, 12 Nov 1999, 93 pp. $\$ 37.50$
41 Coccidae (Insecta: Hemiptera: Coccoidea). C.J.
Hodgson \& R.C. Henderson. ISBN 0-478-09335-7, 23
Feb 2000, 264 pp $\$ 72.50$
42 Aphodiinae (Insecta: Coleoptera: Scarabaeidae). Z.T. Stebnicka. ISBN 0-478-09341-1, 15 Jun 2001, 64 pp.$\$ 29.50$
43 Carabidae (Insecta: Coleoptera): catalogue. A.Larochelle \& M.-C. Larivière. ISBN 0-478-09342-X, 15Jun 2001, 285 pp. ... $\$ 72.50$
44 Lycosidae (Arachnida: Araneae). C.J. Vink. ISBN 0- 478-09347-0, 23 Dec 2002, 94 pp \$37.50
45 Nemonychidae, Belidae, Brentidae (Insecta: Coleoptera: Curculionoidea). G. Kuschel. ISBN 0-478- 09348-9, 28 Apr 2003, 100 pp. $\$ 40.00$
46 Nesameletidae (Insecta: Ephemeroptera). T.R. Hitchings \& A.H. Staniczek. ISBN 0-478-09349-7, 14 May 2003, 72 pp. $\$ 32.50$
47 Erotylidae (Insecta: Coleoptera: Cucujoidea): phylogeny and review. R.A.B. Leschen. ISBN 0-478- 09350-0, 5 June 2003,108 pp $\$ 42.50$
48 Scaphidiinae (Insecta: Coleoptera: Staphylinidae). I. Löbl \& R.A.B. Leschen. ISBN 0-478-09353-5,18 Nov 2003, 94 pp \$37.50

49 Lithinini (Insecta: Lepidoptera: Geometridae: Ennominae). J.D. Weintraub \& M.J. Scoble. ISBN 0-478-09357-8, 29 Apr 2004, 48 pp.
\$24.50
50 Heteroptera (Insecta: Hemiptera): catalogue. M.-C. Larivière \& A. Larochelle. ISBN 0-478-09358-6, 14 May 2004, 330 pp.
$\$ 89.00$
51 Coccidae (Insecta : Hemiptera: Coccoidea): adult males, pupae and prepupae of indigenous species. C.J. Hodgson \& R. C. Henderson. ISBN 0-478-09360-8, 22 June 2004, 228 pp. $\$ 65.00$
52 Raphignathoidea (Acari: Prostigmata). Qing-Hai Fan \& Zhi-Qiang Zhang. ISBN 0-478-09371-3, 20 May 2005, 400 pp. \$89.00
53 Harpalini(Insecta: Coleoptera: Carabidae: Harpalinae). A. Larochelle \& M.-C. Larivière. ISBN 0-478-09369-1, 4 July 2005, 160 pp. $\$ 55.00$
54 Hierodoris (Insecta: Lepidoptera: Gelechoidea: Oecophoridae), and overview of Oecophoridae. Robert J. B. Hoare. ISBN 0-478-09378-0, 24 December 2005, 100 pp. .. $\$ 40.00$
55 Criconematina (Nematoda: Tylenchida). W. M. Wouts. ISBN 0-478-09381-0, 24 March 2006, 232 pp. $\$ 65.00$
56 Tyrophagus (Acari: Astigmata: Acaridae). Qing-Hai Fan \& Zhi-Qiang Zhang. ISBN-13978-0-478-09386-5, May 2007, 291 pp. $\$ 80.00$
Visit the Manaaki Whenua Press Website at: http://www.mwpress.co.nz/
for further information, and to gain access to on-line extracts from these publications.

Taxonomic groups covered in the Fauna of New Zealand series

Coleoptera

Family-group review and keys to identification (J. Klimaszewski \& J.C. Watt, FNZ 37, 1997)
Anthribidae (B.A. Holloway, FNZ 3, 1982)
Anthicidae (F.G. Werner \& D.S. Chandler, FNZ 34, 1995)
Carabidae: catalogue (A. Larochelle \& M.-C. Larivière, FNZ 43, 2001)
Carabidae: Harpalinae: Harpalini (A. Larochelle \& M.-C. Larivière, FNZ 53, 2005)
Curculionidae: Cryptorhynchinae (C.H.C. Lyal, FNZ 29, 1993)

Curculionidae: Molytinae: Molytini (R. C. Craw, FNZ 39, 1999)
Curculionoidea: Nemonychidae, Belidae, Brentidae (G. Kuschel, FNZ 45, 2003)
Curculionoidea larvae: a systematic overview (Brenda M. May, FNZ 28, 1993)
Erotylidae: phylogeny and review (Richard A. B. Leschen, FNZ 47, 2003)
Hydraenidae (R.G. Ordish, FNZ 6, 1984)
Scarabaeidae: Aphodiinae (Z. T. Stebnicka, FNZ 42, 2001)
Staphylinidae: Osoriinae (H. Pauline McColl, FNZ 2, 1982)
Staphylinidae: Scaphidiinae (I. Löbl \& Richard A. B. Leschen, FNZ 48, 2003)
Tenebrionidae: catalogue of types and keys to taxa (J.C. Watt, FNZ 26, 1992)

Diptera

Bibionidae (Roy A. Harrison, FNZ 20, 1990)
Calliphoridae (James P. Dear, FNZ 8, 1986)
Dolichopodidae: Sciapodinae, Medeterinae with a generic review (D.J. Bickel, FNZ 23, 1992)
Therevidae (L. Lyneborg, FNZ 24, 1992)

Ephemeroptera

Leptophlebiidae (D.R. Towns \& W.L. Peters, FNZ 36, 1996)
Nesameletidae (Terry R. Hitchings \& Arnold H. Staniczek, FNZ 46, 2003)

Hemiptera

Cercopidae (K.G.A. Hamilton \& C.F. Morales, FNZ 25, 1992)
Cixiidae (M.-C. Larivière, FNZ 40, 1999)
Coccidae (C. J. Hodgson \& R. C. Henderson, FNZ 41, 2000); adult males, pupae and prepupae of indigenous species (C. J. Hodgson \& R. C. Henderson, FNZ 51, 2004)

Cydnidae, Acanthosomatidae, and Pentatomidae (M.-C. Larivière, FNZ 35, 1995)
Heteroptera: catalogue (M.-C. Larivière \& A. Larochelle, FNZ 50, 2004)
Margarodidae (C.F. Morales, FNZ 21, 1991)
Pseudococcidae (J.M. Cox, FNZ 11, 1987)

Hymenoptera

Chalcidoidea: introduction, and review of smaller families
(J.S. Noyes \& E.W. Valentine, FNZ 18, 1989)

Diapriidae: Ambositrinae (I.D. Naumann, FNZ 15, 1988)
Encyrtidae (J.S. Noyes, FNZ 13, 1988)
Mymaridae (J.S. Noyes \& E.W. Valentine, FNZ 17, 1989)
Pompilidae (A.C. Harris, FNZ 12, 1987)
Pteromalidae: Eunotinae: Moranilini (J.A. Berry, FNZ 33, 1995)
Sphecidae (A.C. Harris, FNZ 32, 1994)

Lepidoptera

Annotated catalogue, and keys to family-group taxa (J. S. Dugdale, FNZ 14, 1988)
Geometridae: Ennominae: Lithinini (Jason D. Weintraub \& Malcolm J. Scoble, FNZ 49, 2004)
Hepialidae (J.S. Dugdale, FNZ 30, 1994)
Nepticulidae (Hans Donner \& Christopher Wilkinson, FNZ 16, 1989)
Oecophoridae: Hierodoris (Robert J. B. Hoare, FNZ 54, 2005).

Mantodea, with a review of aspects of functional morphology and biology (G.W. Ramsay, FNZ 19, 1990)

Plecoptera

Antarctoperlinae (I.D. McLellan, FNZ 27, 1993)
Notonemouridae (I.D. McLellan, FNZ 22, 1991)
Protura (S.L. Tuxen, FNZ 9, 1986)

Thysanoptera

Terebrantia (Laurence A. Mound \& Annette K. Walker, FNZ 1, 1982)
Tubulifera (Laurence A. Mound \& Annette K. Walker, FNZ 10, 1986)

Arachnida

Acari

Acaridae: Tyrophagus (Qing-Hai Fan \& Zhi-Qiang Zhang, FNZ 56, 2007)
Cryptostigmata - a concise review (M. Luxton, FNZ 7, 1985)
Eriophyoidea except Eriophyinae (D.C.M. Manson, FNZ 4, 1984)

Eriophyinae (D.C.M. Manson, FNZ 5, 1984)
Raphignathoidea (Qing-Hai Fan \& Zhi-Qiang Zhang, FNZ 52, 2005)

Araneae

Lycosidae (C. J. Vink, FNZ 44, 2002)

Crustacea

Amphipoda

Talitridae (K.W. Duncan, FNZ 31, 1994)
Gastropoda Mollusca
Naturalised terrestrial Stylommatophora (G.M. Barker, FNZ
38, 1999)

Nematoda
Tylenchida: Criconematina (W. M. Wouts, FNZ 55, 2006)

NOTICES

This series of refereed publications has been established to encourage those with expert knowledge to publish concise yet comprehensive accounts of elements in the New Zealand fauna. The series is professional in its conception and presentation, yet every effort is made to provide resources for identification and information that are accessible to the non-specialist.

Fauna of N.Z. deals with non-marine invertebrates only, since the vertebrates are well documented, and marine forms are covered by the series Marine Fauna of N.Z.

Contributions are invited from any person with the requisite specialist skills and resources. Material from the N.Z. Arthropod Collection is available for study.

Contributors should discuss their intentions with a member of the Invertebrate Systematics Advisory Group or with the Series Editor before commencing work; all necessary guidance will be given.

Subscribers should address inquiries to Fauna of N.Z., Manaaki Whenua Press, Landcare Research, P.O. Box 40, Lincoln 8152, New Zealand.

Subscription categories: ' A ' - standing orders; an invoice will be sent with each new issue, as soon after publication as possible; ' B ' - promotional fliers with order forms will be sent from time to time.

Retail prices (see 'Titles in print', page 288) include packaging and surface postage. Subscribers in New Zealand and Australia pay the indicated amount in \$NZ; GST is included in the price. Other subscribers pay the listed price in \$US, or its equivalent.

Back issues of all numbers are available, and new subscribers wishing to obtain a full set or a selection may request a discount. Booksellers and subscription agents are offered a trade discount of ten percent.

NGAPANUI

Kua whakatūria tēnei huinga pukapuka hei whakahauhau i ngā tohunga whai mātauranga kia whakaputa i ngā kōrero poto, engari he whaikiko tonu, e pā ana ki ngā aitanga pepeke o Aotearoa. He tōtika tonu te āhua o ngā tuhituhi, engari ko te tino whāinga, kia mārama te marea ki ngā tohu tautuhi o ia ngārara, o ia ngārara, me te roanga atu o ngā kōrero mō tēnā, mō tēnā.

He titiro whāiti tā tēnei pukapuka ki ngā mea noho whenua, kāore he tuarā; i pēnei ai i te mea kei te mōhio whānuitia ngā mea whai tuarā, ā, ko ngā mea noho moana, koirā te tino kaupapa o te huinga pukapuka Marine Fauna of N.Z.

Ka āhei te tangata ki te whakauru tuhituhinga mehemea kei a ia ngā tohungatanga me ngā rauemi e tutuki pai ai tana mahi. Heoi anō, e wātea ana te Kohinga Angawaho o Aotearoa hei āta tirotiro mā te tangata mehemea he āwhina kei reira.

Me whāki te kaituhi i ōna whakaaro ki tētahi o te Kāhui Ārahi Whakarōpūtanga Tuarā-Kore, ki te ǵ tita rānei i mua i te tīmatanga, ā, mā rātou a ia e ārahi mō te wāhi ki tana tuhinga.

Ko te hunga pīrangi hoko pukapuka, me tuhi ki Fauna of N.Z., Manaaki Whenua Press, Manaaki Whenua, Pouaka Poutāpeta 40, Lincoln 8152, Aotearoa.

E rua ngā tūmomo kaihoko: "A" - kaihoko tūmau, ka tukua ia pukapuka, ia pukapuka, me te nama, i muri tonu i te tānga; "B" - ka tukua ngā pānui whakatairanga me ngā puka tono i ōna wā anō.

Te utu (tirohia "Titles in print", whārangi 288). Ko te kōpaki me te pane kuini kei roto i te utu. Me utu te hunga e noho ana i Aotearoa me Ahitereiria ki ngā tāra o Aotearoa. Ko ētahi atu me utu te moni kua tohua, ki ngā tāra Merikana, ki te nui o te moni rānei e rite ana.

E toe ana he pukapuka o ngā putanga katoa o mua. Mehemea e hiahia ana koe ki te katoa o ngā pukapuka, ki ētahi rānei, tonoa mai kia whakahekea te utu. Tekau ōrau te heke iho o te utu ki ngā toa hoko pukapuka.

