
Programmable Time Lapse Camera Controller
By Eric Doel with photographic assistance from Len Doel, November 2009

Have you ever wanted to
change time? Are you curious
about events that happen over
days, weeks or months? Do
you want to emulate nature
documentary video sequences
showing thunder clouds
developing in minutes or
flowers opening in seconds?

Even if you have some
electronics knowledge, check
the Electro Technology Industry
Training Organisation (ETITO)
website
(www.brightsparks.org.nz) for
advice and a mentoring
program for New Zealand
primary and secondary school
students. With a few basic
hand tools and a digital
camera, this programmable
camera controller project is for
you.

By using components already
available at home, costs may
be kept to a minimum. A
servomotor may be reused
from a radio-controlled model
and aluminium for the adaptor
plate may be acquired from a
manufacturer’s scrap bin. Be
sure to ask for permission first.
All the suggested electronic bits
need to have a 6 Volt rating or
greater and may be bought
from local retailers.

A prototype time lapse camera controller set up on
ice plant flowers that open in direct sunlight. The
time clock adds information on time to each image.
An umbrella makes an effective temporary shelter for
protecting equipment from rain and the heat of the
sun during a photo shoot in marginal weather
conditions. The gumboot helps anchor an umbrella
when it is windy.

This project combines creating an electronic circuit, building an adaptor plate
so that the servo and the digital camera work together, and writing the
software code.

Another interesting part of the project is being able to show people your video,
produced from the still photographs recorded by this equipment you have
created. Choosing the first subject is pretty easy. The author set a camera up
in the family room of his home, when celebrating a birthday. The camera was
out of the way and soon forgotten until the video was viewed and resulted in
lots of laughs.

To work effectively outdoors, protecting equipment is a little more difficult. For
temporary shelter, umbrellas are great – otherwise a showerproof container
with a clear front should be used. Some food containers may be used but the
interior must be kept dry or condensation may cause water droplets to form on
cold equipment and lenses – not a good environment for electronic gear. To
reduce condensation inside an enclosure you can fill the excess space with
dry rags or bubble wrap. Be sure the lens and servo can still work properly.

The camera should be set on the lowest resolution and the flash turned off.
Make sure the horizon is horizontal and the verticals are vertical – this also
makes the video look a bit more professional. Happy time lapsing!

When starting to think about the software code, a flow diagram may help
explain what you want to achieve. Remember there are often many different
software solutions:

Y

Start

Adjust
button

pressed?

Read pot.
pos.

Y

Set servo
pos.

Read trigger pos.
from non-volatile

memory

Read home pos.
from non-volatile

memory

Set servo to
trigger pos.

Pause 0.5s

Set servo to
home pos.

Pause 0.5s

Pause for
WAITTIME

Write trigger pos.
to non-volatile

memory

Flash LED

Read pot.
pos.

Set servo pos.

Write home pos.
to non-volatile

memory

Flash LED

Adjust
button

pressed? N N

Adjust N
button

pressed?

PLEASE NOTE:
pot. = potentiometer
pos. = position

Experiments with coding and components are carried out on a temporary
“bread board” before a final design for the programme and electronic circuit
are decided. Soldering sockets and hardware is one of the last operations in
prototype development.

Coding:

Launch the PICAXE Programmer and create your own test program to check
the functions of the LED and servo on the camera controller or copy the
“timeLapseTest.bas” programme below:
===
'Eric Lenard Doel, 30/10/09

'Notes to users are started with an apostrophe “ ' ” sign, which is ignored by
'the programme 'compiler and are not part of the code sent to the PICAXE IC.

'This is a test program (timeLapseTest.bas) to ensure that all parts of the
'time-lapse trigger circuit are functional.

'The program first waits for the pushbutton switch (SW2) to be activated, then
'flashes the L.E.D. for one second. It then turns on the servo and makes it
'rotate from 0 to 180 degrees and back again over 3 seconds. After that, it
'links the potentiometer (pot.) to the servo in software so that as the user
'twists the pot. the servo follows it.

WaitForTrigger:

if pin3 = 0 then WaitForTrigger 'Wait for the signal from pushbutton
'switch (SW2)

high 0
pause 1000
low 0

'Flash L.E.D. for one second

for B0 = 0 to 75 'Initiate a loop to make the servo
'rotate in one direction

high 1 'Ensure servo power transistor is on
low 2 'Ensure the servo control line is low
B1 = B0 * 2 + 75 'Calculate a servo pulse length

'(between 75 and 225)
pulsout 2, B1 'Send a pulse indicating where the

'servo should rotate to
pause 20 'Pause until the next servo pulse

next B0
for B0 = 0 to 75 'Initiate a loop to make the servo

'rotate in the opposite direction to the
'loop

high 1 'Ensure servo power transistor is on
low 2 'Ensure the servo control line is low
W1 = B0 * 2 'Calculate a servo pulse length

'(between 75 and 225).

W1 = 225 - W1 'W1 is used because an 8 bit variable
'have a chance of overflow when
'dealing with numbers larger than
'255.

pulsout 2, W1 'Send a pulse indicating where the
'servo should rotate to

pause 20 'Pause until the next servo pulse
next B0
ServoControlled: 'Make the servo replicate pot. position

high 1 'Ensure servo power transistor is on
low 2 'Ensure servo control line is low
readadc 4, B2 'Read pot. position into B2

W0 = B2 * 150 / 256 + 75 'Manipulate B2 into a servo pulse
'time (* 10 us)

pulsout 2, W0 'Send the servo a pulse
pause 20 'Pause until next servo pulse
goto ServoControlled 'Repeat until power is removed

'END OF TEST PROGRAMME (timeLapseTest.bas)
===

Once the LED and servo are seen to be working, try writing software code or
load the program “timeLapseMain.bas”, as listed below:

===
'BEGINNING OF TIME LAPSE PROGRAM (timeLapseMain.bas)
'20/09/09 Eric Doel
'
'Notes to users are started with an apostrophe “ ' ” sign, which is ignored by
'the programme 'compiler and are not part of the code sent to the PICAXE IC.

'START UP
'If pin 3 is pulled high (ie if the black button is depressed (SW2)) when the
'PICAXE is turned on, it flashes the L.E.D. connected to pin 0 for one second.
'The PICAXE reads the voltage output from the potentiometer (pot.)
'connected to pin 4, and uses this data to position the servo connected to pin
'2. Because the servo has a range (in data) lower than that of the pot. (75 –
'225 as opposed to 0 - 255), the pot. reading is manipulated so that the full
'pot. range corresponds to the full servo range. Pin 1 is set high during this
'process to supply power to the servo.
'
'The user first positions the servo (within a second of startup), by rotating
'the pot so that the servo arm is pressing down on the shutter button (i.e.
'taking a 'photo). When pin 3 is pulled high, (the black button is pushed
'(SW2)), the L.E.D. connected to pin 0 is flashed, the servo position is stored
'in 'non-volatile memory position 0 and the PICAXE pauses for half a second.
'The user then adjusts the servo so that it is off the 'shutter button and not
'interfering with the controls, then pulls pin '3 high again (by pushing the black

'button (SW2) again). The PICAXE stores ’position in non-volatile memory
'position 1, then flashes the L.E.D. 'again for a half second.
'
'If pin 3 was not pulled high (the black button (SW2) is not pushed) when the
'PICAXE was turned on, as long as the user has not changed the position of
'the servo or connected the circuit to another camera; the servo home and
'trigger positions are the same; and therefore the program starts from here.
'This means there is no need to make time consuming adjustments.
'
'The servo home and trigger positions are loaded from memory positions 0
'and 1 respectively, into the PICAXE RAM.
'
'The servo is powered and set to activate the shutter then move to the
'home position. Power is removed from the servo for a predetermined
'period of time. This is repeated until the main power supply is removed.
'
'For debugging purposes, an extra piece of code has been added to record
'the number of times that the camera is triggered during the power-on
'session is stored into non-volatile memory address number 2
'
'To read the number of triggers that occurred during the
'last power-on period, start the PICAXE programming editor, press F6
'(or PICAXE >> Debug) to bring up the debugging screen, then connect the
'programming cable to the circuit and finally apply power to the circuit.
'The number of triggers that occurred during the last power-on period will
'be shown in register B0 and may be compared with the number of image
'files from the camera.
'
'===
'THE TIME LAPSE PROGRAM (timeLapseMain.bas) STARTS HERE

'
symbol WAITTIME = 1 'The user can change this period

'between photos, measured in
'minutes

read 2, B0 'Read the last trigger count into B0
debug B0 'Send trigger count to computer
B0 = 0 'Reset the trigger count
write 2, B0
B6 = 0
if pin3 = 0 then ReadPos 'If unit is started without the adjust

'button pressed (SW2)'skip adjust
'sequence and load servo positions
'into RAM

high 0 'Otherwise flash L.E.D. for one
pause 1000 'second and obtain new servo

'positions
low 0

ShutterAdjust: 'User sets shutter triggering position
high 1 'Ensure servo is on
low 2 'Ensure servo control line is low
readadc 4, B2 'Read pot position into B2
W0 = B2 * 150 / 256 + 75 'Manipulate B2 into a servo pulse

'time (* 10 us)
pulsout 2, W0 'Send the servo a pulse
W0 = 2000 - W0 / 100 'Calculate the time remaining until the

'next servo pulse (Should return 18,
'19 or 20 ms)

pause W0 'Pause until the next servo pulse
if pin3 = 0 then ShutterAdjust 'Repeat until pin 3 is pulled high
high 0 'Pulse L.E.D.
pause 500 'Wait ½ a second
low 0
write 0, B2 'Write trigger position into location 0
HomeAdjust: 'User sets "Home" position, i.e. the

'position the servo will rest at
high 1 'Ensure servo is on
low 2 'Ensure servo control line is low
readadc 4, B3 'Read pot position into B3
W0 = B3 * 150 / 256 + 75 'Manipulate B3 into a servo pulse

'time (* 10 us)
pulsout 2, W0 'Send the servo a pulse
W0 = 2000 - W0 / 100 'Calculate the time remaining until the

next servo pulse (Should return 18,
'19 or 20 ms)

pause W0 'Pause until the next servo pulse
if pin3 = 0 then HomeAdjust 'Repeat until pin 3 is pulled high
high 0 'Pulse L.E.D.
pause 500
low 0
write 1, B3 'Write home position into location 1
ReadPos: 'Read trigger and home positions into

'RAM
pause 1000 'Give Cap. a chance to stabilise
read 0, B2 'Trigger
read 1, B3 'Home
Main:
for B4 = 1 to WAITTIME 'wait for a predetermined period of

'time
for B5 = 1 to 60
low 1 'Turn servo off
pause 1000 'Wait one second
next B5
next B4
high 1 'Turn servo on
B6 = B6 + 1 'Increment trigger counter

write 2, B6 'Write trigger counter into non-volatile
'memory location number 2

gosub Trigger 'Trigger camera
goto Main
Trigger:
for B4 = 1 to 25 'make servo travel to shutter for 0.5s
high 1 'Ensure servo is on
low 2 'Ensure servo control line is low
W0 = B2 * 150 / 256 + 75 'Manipulate B2 into a servo pulse

'time (* 10 us)
pulsout 2, W0 'Send the servo a pulse
W0 = 2000 - W0 / 100 'Calculate the time remaining until the

'next servo pulse (Should return 18,
'19 or 20 ms)

pause W0 'Pause until the next servo pulse
next B4
for B4 = 1 to 25 'make servo travel back to home

'position
high 1 'Ensure servo is on
low 2 'Ensure servo control line is low
W0 = B3 * 150 / 256 + 75 'Manipulate B3 into a servo pulse

'time (* 10 us)
pulsout 2, W0 'Send the servo a pulse
W0 = 2000 - W0 / 100 'Calculate the time remaining until the

'next servo pulse (Should return 18,
'19 or 20 ms)

pause W0 'Pause until the next servo pulse
next B4
low 1 'Turn servo off
return 'Go back to the main function

'===
'THE TIME LAPSE PROGRAM ENDS HERE

Parts List:

Semiconductors
1 PICAXE 08M (IC 1)
1 Darlington BJT (BD 681;NPN) (Q1)
or BC 337 (cheaper)
1 green LED (LED 1)

Capacitors
1 1 μF polyester (C1)
1 4700 μF electrolytic (C2)

Resistors (0.25W)
1 100 kΩ potentiometer (R1)
1 100 kΩ (R2) brown black yellow

brown black black orange
1 22 kΩ (R3) red red orange

red red black red
1 10 kΩ (R4) brown black orange

brown black black red
1 2.4 Ω (R5) red yellow gold

red yellow black silver
1 330 Ω (R6) orange orange brown

orange orange black, black
1 1 kΩ (R7) brown black red

brown black black brown

Sockets

Above: Schematic diagram of the time lapse camera controller

Switches
1 SPST switch (SW1)
1 momentary on switch (SW2) black

Other hardware
1 4 x AA battery box/holder
1 6V servomotor (from radio controlled model)
1 piece of printed circuit (PC) strip-board 30 mm x 60 mm
(free from Brightsparks)
* insulated hook up wire for flying leads and jumpers
4 AA NiMH cells and charger
* soldering iron, solder and hand tools including digital
multimeter, ruler, callipers, files, drill and bits, centre punch
* enclosure, machine screws and nuts for securing the servo

1 8 pin IC socket
1 3 pin header socket (male)
1 3 pin header socket (female)

The Circuit Board:
Check to see you have all the components on the list or
suitable substitutes. Where possible, verify with a multimeter
to see that all the components work and that their values are
correct. On the track side of the printed circuit (PC) board, cut
tracks to isolate the 8 pin IC socket legs. Next solder
components such as resistors, jumpers, sockets and
headers. Be sure polarised parts are correctly placed.

Be sure all components are sitting against the PC board and
at all stages check to see connections are sound and solder
bridges are removed. Finally, add flying leads for the switch
and power supply then install the polarised components such
as the LED, capacitor and transistor, followed by the
potentiometer and sockets.
Power up the board and check that voltage values are correct
for the location before installing the eight leg PICAXE 08M
integrated circuit (IC).

Photo right: All components are populating the board and it sits on a
battery box cover using Blu-tack to hold it on the lid. The Blu-tack not only
holds the circuit board, but provides clearance for the components on the
track side. The battery box contains 4 x 2.4 Ahr AA 1.2 Volt rechargeable
NiMH cells.

Above: The track side of the PC board showing tracks cut with a 3-mm drill.
For convenience on the prototype, a small component and jumper have been
soldered on the track side of the board. In the final version, these parts should
be connected on the top of the board.

Adapter Plate:
First, measure and make a full-scale drawing of the camera
and the servo. Next, cut a cardboard template using the
measurements from the full-scale drawing. If adjustments
need to be made, it is easier to make another template than
recut, modify or restart the adapter plate with a new piece of
metal. The camera and servo are assembled in the template
to see that alignments and clearances are OK. The servo arm
should contact the centre of the shutter button. At this stage
check to see that camera function is not made more difficult
by the adapter plate. It would be easier to use the camera
without having to remove it from the plate for battery
changes, memory card installation, menu operations, and so
on. However, the prototype does need to be removed from
the plate for battery changes but with more thought this issue
may be able to be designed out of the system. Do not forget
the camera mounting hole, a brass or stainless steel ¼” NC
wingnut and bolt.
It was decided to build the adapter plate from aluminium, so a
200-mm length of 100 mm X 50 mm X 2 mm box section was
bought from an aluminium door and window manufacturer.
The box section aluminium was cut to produce a piece of
right-angled material and the final design is drawn onto the
metal with a sharp pencil or fine felt-tipped pen to reduce
scratching the powder coating. Once all the hole-centres had
been marked, they were centre punched and drilled with the
smallest drill to be used. The small hole becomes a pilot hole
for the larger drill sizes.

Above L to R: pencil, ruler, callipers, digital camera, servomotor and cardboard
template all sitting on top of a working drawing of the adaptor plate.

Above L to R: callipers, ruler, scriber, centre punch, dividers and pencil with
the powder-coated aluminium resting on top of the tools.

Once all the holes have been drilled to their correct sizes, a
hacksaw or jigsaw may be used to cut out excess material
before all the cuts are smoothed with a file so that the end
user does not get cut by sharp pieces of metal. The builder
should run a finger round all of the cuts as a final check to
see no sharp edges remain.

Insert and attach the servo and camera carefully to the
adapter plate, ensuring neither are scratched or damaged.

Above L to R: battery drill, drill, adapter plate, safety glasses, round file and flat
file with a hacksaw over the top.

Setup and Action

Before installing the camera, check the servo works to its full range via the
potentimeter, and that the trigger and home positions behave as expected. If
not reset the shutter trigger position and home positions (ShutterAdjust and
HomeAdjust from above coding) or recheck the programme coding. Due to
the 4700 μF electrolytic (C2) capacitor, when re-setting the trigger position, be
sure the PICAXE voltage is zero before attempting this operation.

When choosing a subject, spend some time studying it so the camera can be
placed to the subject’s advantage. If sun shadows are used, find out the
length and directions of the shadows so the camera can be sited where the
shadows will not be “cut off”. It may be useful to set up a 100-mm vertical pole
in the camera view.

If working outdoors, be sure to protect equipment from the elements by setting
up a temporary shelter or install the gear in a rainproof enclosure.

See a separate sheet of suggestions available on the Landcare Research
website (http://www.landcareresearch.co.nz), for compiling photo files into a
video using Windows Movie Maker (MM), a free download for the Windows
XP operating system.

MM plays still photos at about 8 frames per second with minimum times for
Picture duration and Transition. To calculate the length of time a video will
run, decide on the interval between photos, multiply by the length of time the
subject will be photographed, then divide by eight.

To use this project as an entry into a Brightsparks Competition
(http://www.brightsparks.org.nz/), it is recommended that the circuit is
mounted in an enclosure complete with logo, control and LED labels. A
log/diary of events/decisions/mentor help is also helpful documentation for
judges to reference. Brightsparks will send free circuit boards to students
registered on their website.

Using the prototype controller and 4 x 2.4 Ahr AA NiMH cells, the servo gave
about 700 shutter actuations. When the power supply voltage dropped, the
servo arm did not return to the home position and finally did not have the
energy to trigger the camera shutter, although the motor continued to run.

With some experimentation, this project could be adapted for use in
photographing wildlife. The camera could be triggered by many other sensors
such as pressure pads, mercury switches, light beams, micro switches, and
motion detectors.

Using Infra Red (IR) light instead of visible light may make this project suitable
for use in low light situations such as in bush or at night. It is possible to buy

or construct IR beams and it is also possible to modify an old digital camera to
increase its IR sensitivity.

Try optimising the controller project. Using energy conservation software
coding will allow the controller to be left for greater periods of time without
battery replacement. Later versions of the PICAXE programme and IC have
commands that allow reduced current draw when the hardware is on standby.
You could also reconfigure the PC board to allow the electronics to be fitted
into a smaller enclosure or you could design and etch your own PC board.

Many thanks to Andrew Hornblow (Brightsparks facilitator) and Alina Arkins
for advice and corrections made during the writing of this project.

	Programmable Time Lapse Camera Controller
	Parts List:
	Setup and Action

